

Kevin F. Donnelly, P.E. Deputy Commissioner Program Management Dr. Feniosky Peña-Mora Commissioner

Mark A. Canu Associate Commissioner Safety and Site Support Jean M. Jean-Louis LEED AP BD+C, ENV SP, CIAQM Assistant Commissioner Safety and Site Support

March 27, 2017

Mr. Stephen Watts Deputy Regional Permit Administrator New York State Department of Environmental Conservation 47-40 21st Street, 2nd Floor Long Island City, New York, 11101-5407

 Re: Application for Jurisdictional Determination to Discharge into Existing Storm Sewers on Collier Avenue and Beach 27th Street
 Construction of Storm Sewers, Sanitary Sewers and Water Mains in New Haven Avenue, etc., Rockaway, Queens, New York 11691
 NYCDDC Project ID: SEQ200524
 Notice of Determination of SPDES Jurisdiction DEC application ID 2-6308-00999

Dear Mr. Watts:

Applemon Corporation has been contracted by CAC Industries, Inc., the project contractor, for designing a dewatering system and obtaining necessary permits to facilitate the construction of the above project.

In response to your determination of jurisdiction, we are requesting an individual State Pollutant Discharge Elimination System (SPDES) permit to temporarily discharge up to 3.22 MGD (2,240 gpm) of groundwater to existing storm sewer on Collier Avenue and Beach 27th Street during Construction of Storm Sewers, Sanitary Sewers and Water Mains in New Haven Avenue, etc., in Rockaway, Queens. The said sewer discharges to Norton Basin through existing NYCDEP MS4 Outfall ROC-651. Based on the groundwater analytical results, cis-1,2-dichloroethylene, and trichloroethylene at a concentration of 29 ug/L and 33 ug/L, respectively, were detected in one of the groundwater samples collected from a monitoring well at the site. Since chemical or activated carbon treatment of the large dewatering flow is not practical, and may not be necessary, the discharge will be remediated using a settling tank. Effluent will be regularly sampled for any evidence of contamination. If Exceedances are detected in the discharge, groundwater will be locally treated using proper treatment methods. Header pipes will convey groundwater from individual wells to the settling tank. Up to seven (7) pumps discharging at 320 gpm each will be used at one time for a period of maximum two years to facilitate this operation.

Herein, we are submitting three copies of the followings:

- 1) Complete SPDES Industrial Application Form NY-2C
- 2) Complete Discharge Monitoring Report (DMR) Signature Authorization Form
- 3) Dewatering Plan showing the location of the project on the street right-of-way, groundwater discharge system, outfall location for discharge into receiving storm sewer, locations of the dewatering wells, and groundwater monitoring wells.
- 4) Laboratory Analytical Report and Field Measurement Report of the samples collected from monitoring wells within the project site.

718-391-3134

As always, the City of New York appreciates the continued cooperation of the NYSDEC in facilitating important infrastructure projects through your applicable permit programs. Please do not hesitate to contact me at (718)391-3134 if you have any questions, or Cavy Chu at (718)391-1005.

Sincerely. 203/27/17

Jean M. Jean-Louis, LEED AP BD+C, ENV SP, CIAQM Assistant Commissioner

Cc: E. MacFarlane, M. Canu, D. Granger, P. Larkin, G. Williams, C. Chu

Cc: Fuad Adib, P.E., PhD (Applemon Corp.)

State Pollutant Discharge Elimination System (SPDES) INDUSTRIAL APPLICATION FORM NY-2C

For New Permits and Permit Modifications to Discharge Industrial Wastewater and Storm Water Section I - Permittee and Facility Information

Please type or print the requested information.

SPDES Number: DEC Num	ıber:	
2. Permit Action Requested: (Check applica		
X A NEW proposed discharge	An EBPS INFORMATION REQUEST response	A RENEWAL of an existing SPDES permit
A MODIFICATION of the existing permit	An EXISTING discharge currently without permit	
loes this request include an increase in the quantity of v	water discharged from your facility to the waters of the State?	
YES - Describe the increase:		
NO - Go to Item 3, below,		

3. Permittee Name and Address

Name New '	Name New York City Department of Design and Construction		Attention Jean Jean-Louis
Street Address	30-30 Thomson Avenue		
City or Village	Long Island City	State NY	ZIP Code 11101

4. Facility Name, Address and Location

Street Address	Collier Ave, Bead	ch 22nd & 25th Stree	ets, Deerfield Rd	P.O. Box	
City or Village	Rockaway		State NY	ZIP Code 11691	
Town Rockaway		County	County Queens		
Telephone		FAX		NYTM - E 605051	NYTM - N 4494886
Tax Map Info (N	lew York City, Nassau C	ounty and Suffolk County on	ly)		
Section		Block	Subblock		Lot

5. Facility Contact Person

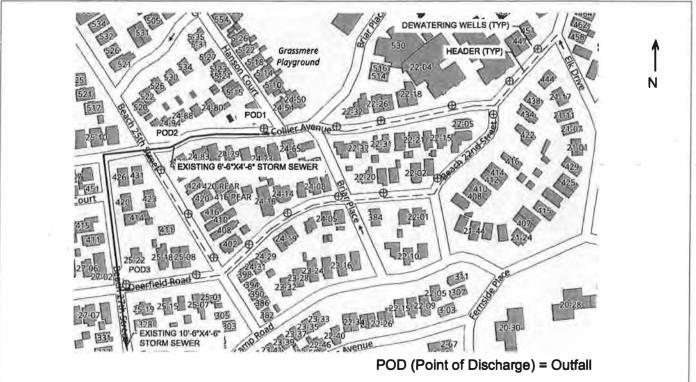
Name Donna J. Cettina		Title Sr Project Manager	
Street Address CAC Industries Inc. 54-08 Vernon Blvd			P.O. Box
City or Village Long Island City		State NY	ZIP Code 11101
Telephone (347) 619-5866	FAX	E-Mail or Internet dcetti	na@cacindinc.com

6. Discharge Monitoring Report (DMR) Mailing Address

Mailing Name CAC Industrie	s Inc.		
Street Address 54-08 Vernon	Blvd		P.O. Box
City or Village Long Island C	lity	State NY	ZIP Code 11101
Telephone (347) 619-5866	FAX	E-Mail or Internet dce	ttina@cacindinc.com
Name and Title of person responsible for si Donna J. Cettina, Sr Proje		Signature Norm	7. Cet In Mp

Page 1

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
	and Water Mains in New Haven Avenue, etc.	


7. Summarize the outfalls present at the facility:

Outfall Number	Receiving Water	Type of discharge
001	Norton Basin MS4 Outfall ROC-651	Groundwater - construction dewatering
002	Norton Basin MS4 Outfall ROC-651	Groundwater - construction dewatering
003	Norton Basin MS4 Outfall ROC-651	Groundwater - construction dewatering

8. Map of FacIIIty and Discharge Locations:

Provide a detailed map showing the location of the facility, all buildings or structures present, wastewater discharge systems, outfall locations into receiving waters, nearby surface water bodies, water supply wells, and groundwater monitoring wells, and attach it to this application. Also submit proof, either by indication on the map or other documentation, that a right of way for the discharges exists from the facility property to a public right of way.

9. Water Flow Dlagram:

Facility Name: Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
and Water Mains in New Haven Avenue, etc.	

10. Nature of business: (Describe the activities at the facility and the date(s) that operation(s) at the facility commenced)

Temporary dewatering to be conducted during excavation for Construction of Storm Sewers, Sanitary Sewers and Water Mains in New Haven Avenue, etc.scheduled to start in March 2017.

11. List the 4-digit SIC codes which describe your facility in order of priority:

Priority 1 1 7 9 4	Description: Excavation Work	Priority 3	Description:
Priority 2 1 6 2 3	Description: Water and sewer work	Priority 4	Description:

12. Is your facility a primary industry as listed in Table 1 of the Instructions?

X NO - Go to Item 13. below.

YES - Complete the following table.

Industrial Category	40	CFR	Industrial Category	40 CFR	
	Part	Subpart		Part	Subpart
		1			

13. Does this facility manufacture, handle, or discharge recombinant-DNA, pathogens, or other potentially Infectious or dangerous organisms?

NO - Go to Item 14 below.

YES - Attach a detailed explanation to this application.

14. Is storm runoff or leachate from a material storage area discharged by your facility?

YES - Complete the following table, and show the location of the stockpile(s) and discharge point(s) on the diagram in Item 9.

X NO - Go to Item 15 on the following page.

Size of area	Type(s) of material stored	Quantity of material stored	Runoff control devices

Facility Name:	Construction of Storm Sewers, Sanitary Sewers and Water Mains in New Haven Avenue, etc.	SPDES Number:	_
15. Facility O	wnership: (Place an "X" in the appropriate box) Sole Proprietorship Partnership Municipal X	State Federal	Other
Are any of the d	lischarges applied for in this application on Indian lands?	Yes No X	

16. List information on any other environmental permits for this facility:

Issuing Agency	Permit Type	Permit Number	· · · · · · · · · · · · · · · · · · ·	Permit Status				
			Active	Applied for	Inactive			
NYSDEC	LI Well	2-6308-00999/0002		x				
NYCDEP	Discharge							

17. Laboratory Certification:

Х

Were any of the analyses reported in Section III of this application performed by a contract laboratory or a consulting firm?

YES - Complete the following table.

NO - Go to Item 18 below.

Name of laboratory or consulting firm	Address	Telephone (area code and number)	Pollutants analyzed
Applemon Corporation	New City, NY	(845) 634-0858	NYSDEC-Region 2 List for dewatering projects

18. Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the Information submitted. Based on my Inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name and official title (type or print) Jean M. Jean-Louis, A	Assistant Commissioner	Date signed 63/27/17
Signature	Telephone number (718) 391-3134	FAX number

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
	and Water Mains in New Haven Avenue, etc.	

19. Industrial Chemical Survey (ICS)

Complete all information for those substances your facility has used, produced, stored, distributed, or otherwise disposed of in the past five (5) years at or above the threshold values listed in the instructions. Include substances manufactured at your facility, as well as any substances that you have reason to know or believe present in materials used or manufactured at your facility. Do not include chemicals used only in analytical laboratory work, or small quantities of routine household cleaning chemicals. Enter the name and CAS number for each of the chemicals listed in Tables 6-10 of the instructions, and the table number which lists the chemical. You may use ranges (e.g. 10-100 lbs., 100-1000 lbs., 1000-10000 lbs., etc.) to describe the quantities used on an annual basis as well as for the amount presently on hand. For those chemicals listed in Tables 6, 7, or 8 which are indicated as being potentially present in the discharge from one or more outfalls et the facility, indicate which outfalls may be affected in the appropriate column below, and include sampling results in Section III of this application for each of the potentially affected outfalls. Make additional copies of this sheet if necessary.

Name of Substance	Table	CAS Number	Average Annual Usage	Amount Now On Hand	Units (gailons, Ibs, etc)	Purpose of Use (see codes in Table 2 of Instructions)	Present In Discharge? (Outfail(s)?)
None							
	_			-			
							ц
			1				
	_						
			1		_		
	++		-				
						L	

This completes Section I of the SPDES Industrial Application Form NY-2C. Section II, which requires specific information for each of the outfalls at your facility, and Section III, which requires sampling information for each of the outfalls at your facility, must also be completed and submitted with this application.

State Pollutant Discharge Elimination System (SPDES) INDUSTRIAL APPLICATION FORM NY-2C

For New Permits and Permit Modifications to Discharge Industrial Wastewater and Storm Water

Section II - Outfall Information

Please type or print the requested information.

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
	and Water Mains in New Haven Avenue, etc.	

1. Outfall Number and Location

Outfall No.	[:] 001							
Latitude 40	• 35	•	55 "	Longitude -73	0	45	32"	Receiving Water Norton Basin Through MS4 Outfall ROC-651

2. Type of Discharge and Discharge Rate (List all information applicable to this outfall)

	Volume/Flow	Units				Units			
		MGD	GPM	Other (specify)		Volume/Flow	MGD	GPM	Other (specify)
a. Process Wastewater					f. Noncontact Cooling Water				
b. Process Wastewater					g. Remediation System Discharge				
c. Process Wastewater					h. Boiler Blowdown				
d. Process Wastewater					i. Storm Water				
e. Contact Cooling Water					J. Sanitary Wastewater				
k. Other discharge (specify):	Construc	tion E	xcava	ation De	watering	2,240		X	
I. Other discharge (specify):									

3. List process Information for the Process Wastewater streams Identified in 2.a-d above:

a. Name of the process contributing to the discharge N/A			Process SIC code:
Describe the contributing process	Category	Quantity per day	Units of measure
	Subcategory		
b. Name of the process contributing to the discharge	I	1	Process SIC code:
Describe the contributing process	Category	Quantity per day	Units of measure
	Subcategory		
c. Name of the process contributing to the discharge		1	Process SIC code:
Describe the contributing process	Category	Quantity per day	Units of measure
	Subcategory	1	
d. Name of the process contributing to the discharge	1	1	Process SIC code:
Describe the contributing process	Category	Quantity per day	Units of measure
	Subcategory	-	

4. Expected or Proposed Discharge Flow Rates for this outfall:

a. Total Annual Discharge		b. Daily Minir	mum Flow	c. Daily Aver	rage Flow	d. Daily Maxim	num Flow	e. Maximum Des	sign flow rate
1175	MG	3.22	MGD	3.22	MGD	3.22	MGD	4.0	MGD

Outfall No.: 001

Facility Name: Construction of Storm Sewers, Sanitary Sewers and Water Mains in New Haven Avenue, etc.	SPDES Number:

5. Is this a seasonal discharge?

X

YES - Complete the following table.

NO - Go to Item 6 below.

	Discharge	frequency	Flow						
Operations contributing flow (list)	Batches	Duration	Flow re	ate per day	Total volume per	Units	Duration		
	per year	per batch	LTA	Daily Max	discharge		(Days)		
12									

6. Water Supply Source (indicate all that apply)

	Name or owner of water supply source	Volume or flow rate	Un	э)	
Municipal Supply			MGD	GPD	GPM
Private Surface Water Source			MGD	GPD	GPM
Private Supply Well			MGD	GPD	GPM
Other (specify)	Groundwater	3.22	XMGD	GPD	GPM

7. Outfall configuration: (Surface water discharges only)

A. Where is the discharge point located with respect to the receiving water?

In the streambank:	X	Discharge to MS4 outfall through a storm sewer
In the stream:		
Within a lake or ponded water:		
Within an estuary:		Attach Supplement C, MIXING ZONE REQUIREMENTS FOR DISCHARGES TO ESTUARIES.
Discharge is equipped with diffuser:		Attach description, including configuration and plan drawing of diffuser, if used.

B. If located in a stream, approximately what percentage of stream width from shore is the discharge point located?

10% 25% 50%	Other:	
-------------	--------	--

C. If located in a stream, describe the stream geometry in the general vicinity of the discharge point, under low flow conditions:

Stream width	Stream depth	Stream velocity	Are the results of a mixing/diffusion study attached?	YES
Feet	Feet	Feet/Sec		

INDUSTRIAL APPLICATION FORM NY-2C

Section II - Outfall Information

Outfall No.: 001

Facility Name: Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
and Water Mains in New Haven Avenue, etc.	

8. Thermal Discharge Criteria

Is your facility one of the applicable types of facilities listed in the instructions, and does the temperature of this discharge exceed the receiving water temperature by greater than three (3) degrees Fahrenheit?

	YES - Complete the following table. X NO - Go to Item 9. below.			Information on the Intake and discharge configuration of this outfail is attached.				
Discharg Average	e Temperatur Maximum	e, deg. F		ion of discharge		maximum narge	Maximum	Discharge configuration (e.g. subsurface, surface,
change in	change in		tempe	rature	tempe	erature	flow rate	effluent diffuser, diffusion well, etc.)
temperature (delta T)	temperature (delta T)	Maximum temperature	hours per day	days per year	From	То	MGD	

9. Are any water treament chemicals or additives that are used by your facility subsequently discharged through this outfall?

YES - Complete the following table and complete pages 1 of 3 and 2 of 3 of Form WTCFX for each water treatment chemical listed.

X NO - Go to Item 10. below.

Manufacturer	WTC trade name	Manufacturer	WTC trade name
	-		
		(A.)	

10. Has any biological test for acute or chronic toxicity been performed on this outfall or on the receiving water in relation to this outfall in the past three (3) years?

YES - Complete the following table.

X

NO - Go to Item 11. on the following page.

Purpose of test	Type of test	Chronic			date(s)	Submitted?
		or Acute?		Start	Finish	(Date)
	1	1				
		1 1				
		1 1				
	Purpose of test	Purpose of test Type of test	Purpose of test Type of test Chronic or Acute?	Purpose of test Type of test Chronic or Acute? Image: Subject species Image: Subject species <tr< td=""><td></td><td></td></tr<>		

Page 3

Outfall No.:

001

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
	and Water Mains in New Haven Avenue, etc.	

11. Is the discharge from this outfall treated to remove process wastes, water treatment additives, or other pollutants? X

YES - Complete the following table. Treatment codes are listed in Table 4.

NO - Go to Item 12 below.

Treatment process	Treatment Code(s)	Treatment used for the removal of:	Design Flow Rate (Include units)		
Sedimentation	1-U	Ques and ad Qalida	3.22		
Sedmentation		Suspended Solids	3.22	IVIGD	
		-			
		-			
		-			
		-			
		_			

12. Does this facility have either a compliance agreement with a regulating agency, or have planned changes in production, which will materially alter the quantity and/or quality of the discharge from this outfall?

YES - Complete the following table.

NO - Go to Section III on the following page.

Description of project	Subject to Condition or Agreement in	Change due to	Completion Date(s)		
	existing permit or consent order? (List)	production increase?	Required	Projected	
Construction of Storm Sewers, Sanitary	SPDES Permit	None		2018	
Sewers and Water Mains in New Haven Avenue, etc.	for MS4 Outfall ROC-651	ei.			
	on Norton Basin				

This completes Section II of the SPDES Industrial Application Form NY-2C. Section I, which requires general information regarding your facility, and Section III, which requires sampling information for each of the outfalls at your facility, must also be completed and submitted with this application.

Facility Name: Construction of Storm Sewers, Sanitary Sewers	SPDES No.:	Outfall No.: 001
and Water Mains in New Haven Avenue, etc.		001

1. Sampling Information - Conventional Parameters

Provide the analytical results of at least one analysis for every pollutant in this table. If this outfall is subject to a waiver as listed in Table 5 of the instructions for one or more of the parameters listed below, provide the results for those parameters which are required for this type of outfall.

PLEASE PRINT OR TYPE IN T	HE UNSHADE	D AREAS O				nation on se	parate sheets					
				Effluent data				Un	its	Intal	ke data (optic	mal)
Pollutant	a. Maximu	m daily value	b. Maximum 30 day value		c. Long term average			a. Concentration	b. Mass	a. Long term	average value	b. Number o
	1. Concentration	2. Mass	1. Concentration	2. Mass	1. Concentration	2. Mass	analyses			1. Concentration	2. Mass	analyses
a. Biochemical Oxygen Demand, 5 day (BOD)			1						÷			
b. Chemical Oxygen Demand (COD)												
c. Total Suspended Solids (TSS)	32.4							mg/L				
d. Total Dissolved Solids (TDS)												
e. Oil & Grease	<0.541							mg/L				
f. Chlorine, Total Residual (TRC)												
g. Total Organic Nitrogen (TON)												
h. Ammonia (as N)												
i. Flow	Value 3.22	2	Value		Value			MGD		Value		
j. Temperature, winter	Value		Value		Value			F		Value		
k. Temperature, summer	Value 55.4	4	Value		Value			°F		Value		
l. pH	Minimum	Maximum 7.2	Minimum	Maximum						Minimum	Maximum	

2. Sampling Information - Priority Pollutants, Toxic Pollutants, and Hazardous Substances

a. Primary Industries:	I. Does the discharge from this outfall contain process wastewater?		Yes - Go to Item II. below.
		X	No - Go to Item b. below.
	II. Indicate which GC/MS fractions have been tested for. Volatiles:		Acid: Base/Neutral: Pesticide:
b. All applicants:	I. Do you know or have reason to believe that any of the pollutants listed in Tables 6, 7, or 8 of the Instructions are present in the discharge from this outfall?	X	Yes - Concentration and mass data attached. No - Go to Item II. below.
	II. Do you know or have reason to believe that any of the pollutants listed in Table 9 or Table 10 of the Instructions, or any other toxic, harmful, or Injurious chemical substances not listed in Tables 6-10, are present in the discharge from this outfall?	X	Yes - Source or reason for presence in discharge attached Yes - Quantitative or qualitative data attached No

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES No.:	Outfall No.: 001
	and Water Mains in New Haven Avenue, etc.		601

3. Projected Effluent Quality - Priority Pollutants, Toxic Pollutants, and Hazardous Substances

Provide analytical results of at least one analysis for each pollutant that you know or have reason to believe is present in this discharge, as well as for any GC/MS fractions and metals required to be sampled from Section III Forms, Item 2.a on the preceding page.

List the name and CAS number for each pollutant that you know or have reason to believe is present in the discharge from this outfall. For each pollutant listed from Tables 6, 7, or 8, provide the results of at least one analysis for that pollutant, and determine the mass discharge based on the flow rate reported in Item 1.i. For each pollutant listed from Tables 6, 7, 9, or any other toxic pollutant not listed in Tables 6-10, you must provide concentration and mass data (if available) and/or an explanation for their presence in the discharge. Make as many copies of this table as necessary for each outfall.

Pollutan	t and CAS Number				Effluent data	3			U	nits		ke data (opt		Believed present, n
		a. Maximum	daily value	b. Maximum 3 avei	0 day value (1/ ebis)	c. Long term a	verage value (# Isble)	d. Number of analyses	a. Concen- tration	b. Mass	a. Long term a		d. Number of analyses	sampling results
		(1)Concen- tration	(2) Mass	(1)Concen- tration	(2) Mass	(1)Concen- tration	(2) Mass				(1)Concen- tration	(2) Mass		evailable
CAS Number:	Arsenic 7440-38-2	0.007							mg/L					
CAS Number:	Chromium 7440-47-3	0.010							mg/L					-
CAS Number:	Copper 7440-50-8	0.005							mg/L					
CAS Number:	Nickel 7440-02-0	0.008							mg/L					
CAS Number:	Lead 7439-92-1	<0.003							mg/L					
CAS Number:	Zinc 7440-66-6	0.0308							mg/L			2		
CAS Number:													<u> </u>	
CAS Number:								· · · · · · · · · · · · · · · · · · ·						
CAS Number:			_											
CAS Number:														
CAS Number:														
CAS Number:														
CAS Number:		-												

Page 2

Facility Name:	Construction of	Storm Sewers, Sans in New Haven A	anitary Sewers	SP	DES No.:		Outfall No.:	001
Provide an	g Effluent Quality nalytical results for the la	- Priority Pollutant	ts, Toxic Pollutar	its, and Hazardo w or have reason to be	us Substances lieve present in this discha	arge from this outfall, as v	vell as for any GC/MS fra	ctions and metals require
Make as many necessary for e	copies of this table as each outfall. You can from 24 sampling dates	Parameter name: CIS-	Parameter name:	Parameter name:	Parameter name:	Parameter name:	Parameter name:	Parameter name:
Page 1	Of 1	CAS Number: 156-59-2	CAS Number: 79-01-6	CAS Number:	CAS Number:	CAS Number:	CAS Number:	CAS Number:
	Flow rate	Concentration	Concentration	Concentration	· Concentration	Concentration	Concentration	Concentration
Date	Units:	Units: ug/L	Units: ug/L	Units:	Units:	Units:	Units:	Units:
5/3/2016	MW-1	29	33					
								4
							1	
				1				
	-		1					
			1					

Page 3

State Pollutant Discharge Elimination System (SPDES) INDUSTRIAL APPLICATION FORM NY-2C

For New Permits and Permit Modifications to Discharge Industrial Wastewater and Storm Water

Section II - Outfall Information

Please type or print the requested information.

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
	and Water Mains in New Haven Avenue, etc.	

1. Outfall Number and Location

Outfall No.:	002						
Latitude 40	• 35	54 "	Longitude -73	•	45	37 "	Receiving Water Norton Basin Through MS4 Outfall ROC-651

2. Type of Discharge and Discharge Rate (List all information applicable to this outfall)

			Unit	S			Units		
	Volume/Flow	MGD	GPM	Other (specify)		Volume/Flow	MGD	GPM	Other (specify)
a. Process Wastewater					f. Noncontact Cooling Water				
b. Process Wastewater					g. Remediation System Discharge			_	
c. Process Wastewater					h. Boiler Blowdown		_		
d. Process Wastewater					i. Storm Water				
e. Contact Cooling Water					j. Sanitary Wastewater				
k. Other discharge (specify):	Construc	tion E	xcava	ation De	watering	2,240		х	
I. Other discharge (specify):									

3. List process Information for the Process Wastewater streams Identified In 2.a-d above:

a. Name of the process contributing to the discharge N/A			Process SIC code:
Describe the contributing process	Category	Quantity per day	Units of measure
	Subcategory		
b. Name of the process contributing to the discharge	I		Process SIC code:
Describe the contributing process	Category	Quantity per day	Units of measure
	Subcategory	-	
c. Name of the process contributing to the discharge			Process SIC code:
Describe the contributing process	Category	Quantity per day	Units of measure
	Subcategory		
d. Name of the process contributing to the discharge		I.	Process SIC code:
Describe the contributing process	Category	Quantity per day	Units of measure
	Subcategory	· ·	

4. Expected or Proposed Discharge Flow Rates for this outfall:

a. Total Annual Discharge		b. Daily Minimum Flow		c. Daily Average Flow		d. Daily Maxin	num Flow	e. Maximum Design flow rate		
1175	MG	3.22	MGD	3.22	MGD	3.22	MGD	4.0	MGD	

Outfall No.: 002

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
	and Water Mains in New Haven Avenue, etc.	

5. Is this a seasonal discharge?

X

YES - Complete the following table.

NO - Go to Item 6 below.

	Discharge	frequency	Flow						
Operations contributing flow (list)	Batches	Duration per batch	Flow rate per day		Total volume per	Units	Duration		
	per year		LTA	Daily Max	discharge		(Days)		
						-			

6. Water Supply Source (Indicate all that apply)

	Name or owner of water supply source	Volume or flow rate	Uni)	
Municipal Supply			MGD	GPD	GPM
Private Surface Water Source			MGD	GPD	GPM
Private Supply Well			MGD	GPD	GPM
Other (specify)	Groundwater	3.22	X MGD	GPD	GPM

7. Outfall configuration: (Surface water discharges only)

A. Where is the discharge point located with respect to the receiving water?

In the streambank:	X	Discharge	to MS4 ou	tfall through a storm sewer	
In the stream:					
Within a lake or ponde	d water:				
Within an estuary:		Attach Suppler	nent C, MIXIN	G ZONE REQUIREMENTS FOR DISCHARGES TO E	STUARIES.
Discharge is equipped	with diffuser:	Attach descript	ion, including	configuration and plan drawing of diffuser, if used.	
10%	25%	50%	Other:	e discharge point, under low flow conditions:	
Stream width	Stream depth	Stream ve		Are the results of a mixing/diffusion study attached?	YES
Feet	Feet		Feet/Sec	<u> </u>	NO
	1				

Section II - Outfall Information

Facility Name: Construction of Storm Sewers, Sanitary Sewers SPDES Number: and Water Mains in New Haven Avenue, etc.

8. Thermal Discharge Criteria

1

Х

Is your facility one of the applicable types of facilities listed in the instructions, and does the temperature of this discharge exceed the receiving water temperature by greater than three (3) degrees Fahrenheit?

	YES - Complete the following table. X NO - Go to Item 9. below.				Informat attached		Intake and (discharge configuration of this outfail is
Discherg Average change in	e Temperatum Maximum change in	e, deg. F	Duration of maximum discharge temperature		Dates of maximum discharge temperature		Maximum flow rate	Discharge configuration (e.g. subsurface, surface, effluent diffuser, diffusion well, etc.)
temperature (delta T)	temperature (delta T)	Maximum temperature	hours per day	days per year	From To		MGD	

9. Are any water treament chemicals or additives that are used by your facility subsequently discharged through this outfall?

Manufacturer	WTC trade name	Manufacturer
		1

10. Has any biological test for acute or chronic toxicity been performed on this outfall or on the receiving water in relation to this outfall in the past three (3) years?

YES - Complete the following table.

NO - Go to Item 11. on the following page.

Water tested	Purpose of test	Type of test	Chronic	Subject species	Testing	date(s)	Submitted?	
			or Acute?		Start	Finish	(Date)	
			1 1					
			1 1		1			
			-					

Outfall No.:

002

and all and and links of

Outfall No.:

002

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
	and Water Mains in New Haven Avenue, etc.	

11. Is the discharge from this outfall treated to remove process wastes, water treatment additives, or other pollutants?

X YES - Complete the following table. Treatment codes are listed in Table 4.

NO - Go to Item 12 below.

Treatment process	Treatment Code(s)	Treatment used for the removal of:	Design Flow Rate (include units)		
Sedimentation	1-U	Suspended Solids	3.22 MGD		
		-			
		_			
		-			

12. Does this facility have either a compliance agreement with a regulating agency, or have planned changes In production, which will materially alter the quantity and/or quality of the discharge from this outfall?

X YES - Complete the following table.

NO - Go to Section III on the following page.

Description of project	Subject to Condition or Agreement in	Change due to	Completion Date(s)		
	existing permit or consent order? (List)	production increase?	Required	Projected	
Construction of Storm Sewers, Sanitary	SPDES Permit	None		2018	
Sewers and Water Mains in New Haven Avenue, etc.	for MS4 Outfall ROC-651				
	on Norton Basin				
			//		

This completes Section II of the SPDES Industrial Application Form NY-2C. Section I, which requires general Information regarding your facility, and Section III, which requires sampling Information for each of the outfalls at your facility, must also be completed and submitted with this application.

Facility Name: Construction of Storm Sewers, Sanitary Sewers	SPDES No.:	Outfall No.: 000
and Water Mains in New Haven Avenue, etc.		002

1. Sampling Information - Conventional Parameters

Provide the analytical results of at least one analysis for every pollutant in this table. If this outfall is subject to a waiver as listed in Table 5 of the instructions for one or more of the parameters listed below, provide the results for those parameters which are required for this type of outfall.

PLEASE PRINT OR TYPE IN T				filuent data				Uni			e data (optic				
Pollutant	a. Mædmur	n daily value	b. Maximum 3	0 dey value	c. Long term	average		a. Concentration b. Ma	a. Concentration	a. Concentration	a. Concentration	b. Mass	a. Long term e	verage value	b. Number of
	1. Concentration	2. Mass	1. Concentration	2. Mass	1. Concentration	2. Mass	enalyses			1. Concentration	2. Mass	analyses			
a. Biochemical Oxygen Demand, 5 day (BOD)															
b. Chemical Oxygen Demand (COD)															
c. Total Suspended Solids (TSS)	32.4							mg/L			1				
d. Total Dissolved Solids (TDS)															
e. Oil & Grease	<0.541							mg/L							
f. Chlorine, Total Residual (TRC)												1			
g. Total Organic Nitrogen (TON)															
h. Ammonia (as N)															
i. Flow	Value 3.22	2	Value		Value		1	MGD		Value					
j. Temperature, winter	Value		Value		Vetue			۴		Value					
k. Temperature, summer	Value 55.4	1	Value		Value			°F		Value		1			
І. рН	Minimum	Maximum 7.2	Minimum	Maximum					-	Minimum	Maximum				

2. Sampling Information - Priority Pollutants, Toxic Pollutants, and Hazardous Substances

a. Primary industries:	I. Does the discharge from this outfall contain process wastewater?		Yes - Go to Item II. below.
		X	No - Go to Item b. below.
	II. Indicate which GC/MS fractions have been tested for. Volatiles:		Acid: Base/Neutral: Pesticide:
b. All applicants:	I. Do you know or have reason to believe that any of the pollutants listed in Tables 6, 7, or 8 of the instructions are present in the discharge from this outfall?	X	Yes - Concentration and mass data attached. No - Go to Item II. below.
	II. Do you know or have reason to believe that any of the pollutants listed in Table 9 or Table 10 of the instructions, or any other toxic, harmful, or injurious chemical substances not listed in Tables 6-10, are present in the discharge from this outfall?	x	Yes - Source or reason for presence in discharge attached Yes - Quantitative or qualitative data attached No

Page 1

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES No.:	Outfall No.: 002
	and Water Mains in New Haven Avenue, etc.		002

3. Projected Effluent Quality - Priority Pollutants, Toxic Pollutants, and Hazardous Substances

Provide analytical results of at least one analysis for each pollutant that you know or have reason to believe is present in this discharge, as well as for any GC/MS fractions and metals required to be sampled from Section III Forms, Item 2.a on the preceding page.

List the name and CAS number for each pollutant that you know or have reason to believe is present in the discharge from this outfall. For each pollutant listed from Tables 6, 7, or 8, provide the results of at least one analysis for that pollutant, and determine the mass discharge based on the flow rate reported in Item 1.i. For each pollutant listed from Tables 6, 7, 9, or any other toxic pollutant not listed in Tables 6-10, you must provide concentration and mass data (if available) and/or an explanation for their presence in the discharge. Make as many copies of this table as necessary for each outfall.

Pollutant and CAS Number		Effluent data								nits	Intake data (optional)			Believed present, no
		a. Maximum	daily value	b. Maximum 30 day value (if available)		c. Long term average value (if evaluable)		d. Number of analyses	a. Concen- tration	b. Mess	a. Long term average value		d. Number of analyses	sampling
		(1)Concen- tration	(2) Masa	(1)Concen- tration	(2) Mass	(1)Concen- tration	(2) Mass				(1)Concern- tration	(2) Mass		available
CAS Number.	Arsenic 7440-38-2	0.007							mg/L					
CAS Number:	Chromium 7440-47-3	0.010							mg/L					
CAS Number:	Copper 7440-50-8	0.005							mg/L			_		
CAS Number:	Nickel 7440-02-0	0.008							mg/L					
CAS Number:	Lead 7439-92-1	<0.003							mg/L					
CAS Number:	Zinc 7440-66-6	0.0308							mg/L					
CAS Number:					1									
CAS Number:													-	1
CAS Number:										1				
CAS Number:		_												
CAS Number:														
CAS Number:														
CAS Number:														

Page 2

Inccessary for each outfall. You can list the results from 24 sampling dates on each copy of this page. Cis-1,2-dichloroethylene Trichloroethylene CAS Number: CAS Number: <th>ions and metals requ Parameter name: CAS Number:</th>	ions and metals requ Parameter name: CAS Number:
Make as many copies of this table as necessary for each outfall. You can ist the results from 24 sampling dates on each copy of this page. Parameter name: P	
Image Image <th< th=""><th>CAS Number:</th></th<>	CAS Number:
Date Units: Units: Units: Units: Units:	(
	Concentration
	Units:
Image: set of the	
Image: state of the state of	
	l
Image: selection of the	
	<u> </u>

State Pollutant Discharge Elimination System (SPDES) INDUSTRIAL APPLICATION FORM NY-2C

For New Permits and Permit Modifications to Discharge Industrial Wastewater and Storm Water

Section II - Outfall Information

Please type or print the requested information.

Facility Name: Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
and Water Mains in New Haven Avenue, etc.	

1. Outfall Number and Location

Outfall No.:	003								
Latitude 40	° 35	6	51 "	Longitude -73	0	45	"	38 "	Receiving Water Norton Basin Through MS4 Outfall ROC-651

2. Type of Discharge and Discharge Rate (List all information applicable to this outfall)

		Units			1		Units		
	Volume/Flow	MGD GPM (specify)				Volume/Flow	MGD	GPM	Other (specify)
a. Process Wastewater					f. Noncontact Cooling Water				
b. Process Wastewater					g. Remediation System Discharge				-
c. Process Wastewater					h. Boiler Blowdown				
d. Process Wastewater					i. Storm Water				
e. Contact Cooling Water					j. Sanitary Wastewater				
k. Other discharge (specify): Construction Excavation Dewate					watering	2,240		Х	
I. Other discharge (specify):									4

3. List process information for the Process Wastewater streams identified in 2.a-d above:

		Process SIC code:					
Category	Quantity per day	Units of measure					
Subcategory							
	1	Process SIC code:					
Category	Quantity per day	Units of measure					
Subcategory							
c. Name of the process contributing to the discharge							
Category	Quantity per day	Units of measure					
Subcategory							
d. Name of the process contributing to the discharge							
Category	Quantity per day	Units of measure					
Subcategory	-						
	Category	Subcategory Quantity per day Category Quantity per day Category Quantity per day					

4. Expected or Proposed Discharge Flow Rates for this outfall:

a. Total Annual	Discharge	b. Daily Minimum Flow		c. Daily Aver	age Flow	d. Daily Maxin	num Flow	e. Maximum Design flow rate		
1175	MG	3.22	MGD	3.22	MGD	3.22	MGD	4.0	MGD	

Outfall No.: 003

Facility Name:	Construction of Storm Sewers, Sanitary Sewers and Water Mains in New Haven Avenue, etc.	SPDES Number:

5. Is this a seasonal discharge?

X

YES - Complete the following table.

X NO - Go to Item 6 below.

	Discharge	Flow						
Operations contributing flow (list)	Batches	Duration	Flow rate per day		Total volume per	Units	Duration (Days)	
	per year	per batch	LTA Daily Max		discharge			

6. Water Supply Source (indicate all that apply)

	Name or owner of water supply source	Volume or flow rate	Unit)	
Municipal Supply			MGD	GPD	GPM
Private Surface Water Source			MGD	GPD	GPM
Private Supply Well			MGD	GPD	GPM
Other (specify)	Groundwater	3.22	X MGD	GPD	GPM

7. Outfail configuration: (Surface water discharges only)

A. Where is the discharge point located with respect to the receiving water?

In the streambank:	X	Discharge to MS4 outfall through a storm sewer
In the stream:		
Within a lake or ponded water:		
Within an estuary:		Attach Supplement C, MIXING ZONE REQUIREMENTS FOR DISCHARGES TO ESTUARIES.
Discharge is equipped with diffuser:		Attach description, including configuration and plan drawing of diffuser, if used.

B. If located in a stream, approximately what percentage of stream width from shore is the discharge point located?

10%	25%	50%	Other:

C. If located in a stream, describe the stream geometry in the general vicinity of the discharge point, under low flow conditions:

Stream width	Stream depth	Stream velocity	Are the results of a mixing/diffusion study attached?	YES
Feet	Feet	Feet/Sec		NO

INDUSTRIAL APPLICATION FORM NY-2C

Section II - Outfall Information

Outfall No.:	003
---------------------	-----

Facility Name: Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
and Water Mains in New Haven Avenue, etc.	

8. Thermal Discharge Criteria

Is your facility one of the applicable types of facilities listed in the instructions, and does the temperature of this discharge exceed the receiving water temperature by greater than three (3) degrees Fahrenheit?

YES - Complete the following table. X NO - Go to Item 9. below.						Information on the intake and discharge configuration of this outfall is attached.				
	Discharge Temperature, deg. F Average Maximum change in change in		Duration of maximum discharge temperature		Dates of maximum discharge temperature		Maximum flow rate	Discharge configuration (e.g. subsurface, surface, effluent diffuser, diffusion well, etc.)		
	temperature (delta T)	temperature (delta T)	Maximum temperature	hours per day	days per year	From	То	MGD		

9. Are any water treament chemicals or additives that are used by your facility subsequently discharged through this outfall?

YES - Complete the following table and complete pages 1 of 3 and 2 of 3 of Form WTCFX for each water treatment chemical listed.

X NO - Go to Item 10. below.

Manufacturer	WTC trade name	Manufacturer	WTC trade name
			÷
			,

10. Has any biological test for acute or chronic toxicity been performed on this outfall or on the receiving water in relation to this outfall in the past three (3) years?

YES - Complete the following table.

Χ

NO - Go to Item 11. on the following page.

Water tested	Purpose of test	Type of test	Chronic	Subject species	Testing	Submitted?	
			or Acute?	or Acute?		Finish	(Date)
	1						
	0						
					1		
			-				

Outfall No.: 003

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES Number:
	and Water Mains in New Haven Avenue, etc.	

11. Is the discharge from this outfall treated to remove process wastes, water treatment additives, or other pollutants?

X YES - Complete the following table. Treatment codes are listed in Table 4.

NO - Go to Item 12 below.

Treatment process	Treatment Code(s)	Treatment used for the removal of:	Design Flow Rate (include units)
Sedimentation	1-U	Suspended Solids	3.22 MGD
		-	
		-	
		-	
*	2		

12. Does this facility have either a compliance agreement with a regulating agency, or have planned changes in production, which will materially alter the quantity and/or quality of the discharge from this outfall?

YES - Complete the following table.

NO - Go to Section III on the following page.

Description of project	Subject to Condition or Agreement in	Change due to production increase? None	Completion Date(s)		
	existing permit or consent order? (List)	production increase?	Required	Projected	
Construction of Storm Sewers, Sanitary	SPDES Permit	None		2018	
Sewers and Water Mains in New Haven Avenue, etc.	for MS4 Outfall ROC-651	st) production increase? Required P			
	on Norton Basin				

This completes Section II of the SPDES Industrial Application Form NY-2C. Section I, which requires general information regarding your facility, and Section III, which requires sampling information for each of the outfalls at your facility, must also be completed and submitted with this application.

Facility Name: Construction of Storm Sewers, Sanitary Sewers	SPDES No.:	Outfall No.: 003
and Water Mains in New Haven Avenue, etc.		000

1. Sampling Information - Conventional Parameters Provide the analytical results of at least one analysis for every pollutant in this table. If this outfall is subject to a waiver as listed in Table 5 of the instructions for one or more of the parameters listed below, provide the results for those parameters which are required for this type of outfall.

			E	filuent data				Uni	ts	Intak	e data (optio	nal)
Pollutant	a. Maximum daily value		b. Maximum 3	0 day value	c. Long term	c. Long term average		a. Concentration	b. Mess	a. Long term average value		b. Number of
	1. Concentration	2. Mass	1. Concentration	2. Mess	1. Concentration	2. Mass	analyses			1. Concentration	2. Mass	analyses
a. Biochemical Oxygen Demand, 5 day (BOD)												
b. Chemical Oxygen Demand (COD)												
c. Total Suspended Solids (TSS)	32.4							mg/L				-
d. Total Dissolved Solids (TDS)												
e. Oil & Grease	<0.541				1			mg/L				
f. Chlorine, Total Residual (TRC)												
g. Total Organic Nitrogen (TON)												
h. Ammonia (as N)												
i. Flow	Value 3.22	2	Value		Value			MGD		Value		
j. Temperature, winter	Value		Value		Value			F		Value		
k. Temperature, summer	Value 55.4	4	Value		Value			°F		Value		
I. pH	Minimum	Maximum 7.2	Minimum	Maximum						Minimum	Maximum	

2. Sampling Information - Priority Pollutants, Toxic Pollutants, and Hazardous Substances

a. Primary Industries:	I. Does the discharge from this outfall contain process wastewater?		Yes - Go to Item II. below.
		X	No - Go to item b. below.
	II. Indicate which GC/MS fractions have been tested for. Volatiles:		Acid: Base/Neutral: Pesticide:
b. All applicants:	I. Do you know or have reason to believe that any of the pollutents listed in Tables 6, 7, or 8 of the instructions are present in the discharge from this outfall?	X	Yes - Concentration and mass data attached. No - Go to Item II. below.
	II. Do you know or have reason to believe that any of the pollutants listed in Table 9 or Table 10 of the Instructions, or any other toxic, harmful, or injurious chemical substances not listed in Tables 6-10, are present in the discharge from this outfall?		Yes - Source or reason for presence in discharge attached Yes - Quantitative or qualitative data attached
		X	No

INDUSTRIAL APPLICATION FORM NY-2C

Section III - Sampling Information

Facility Name:	Construction of Storm Sewers, Sanitary Sewers	SPDES No.:	Outfall No.: 003
	and Water Mains in New Haven Avenue, etc.		

3. Projected Effluent Quality - Priority Pollutants, Toxic Pollutants, and Hazardous Substances

Provide analytical results of at least one analysis for each pollutant that you know or have reason to believe is present in this discharge, as well as for any GC/MS fractions and metals required to be sampled from Section III Forms, Item 2.a on the preceding page.

List the name and CAS number for each pollutant that you know or have reason to believe is present in the discharge from this outfall. For each pollutant listed from Tables 6, 7, Page 1 of 1 or 8, provide the results of at least one analysis for that pollutant, and determine the mass discharge based on the flow rate reported in Item 1.i. For each pollutant listed from Table 9, or any other toxic pollutant not listed in Tables 6-10, you must provide concentration and mass data (if available) and/or an explanation for their presence in the discharge. Make as many copies of this table as necessary for each outfall. Pollutant and CAS Number Effluent data Units Intake data (optional) Believed present, no a. Maximum daily value b. Maximum 30 day value (# c. Long term average value (# d. Number of a. Concenb. Mass a. Long term average value d. Number of sampling tration everiede) avalable) analyses analyses results available (2) Mass (1)Concen-(2) Mass (1)Concen-(2) Mass (1)Concer-(1)Concen-(2) Mass tration tration tration tration mg/L CAS Number: Chromium 0.010 mg/L 7440-47-3 CAS Number: Copper 0.005 mg/L 7440-50-8 CAS Number: Nickel 0.008 7440-02-0 mg/L CAS Number: Lead < 0.003 mg/L 7439-92-1 CAS Number: Zinc 0.0308 mg/L 7440-66-6 CAS Number: CAS Number:

Facility Name: Construction of Storm Sewers, Sanitary Sewers SPDES No .: **Outfall No.:** 003 and Water Mains in New Haven Avenue, etc.

4. Existing Effluent Quality - Priority Pollutants, Toxic Pollutants, and Hazardous Substances Provide analytical results for the last three (3) years for each pollutant that you know or have reason to believe present in this discharge from this outfall, as well as for any GC/MS fractions and metals required to be sampled from Section III Forms, Item 2.a for this discharge.

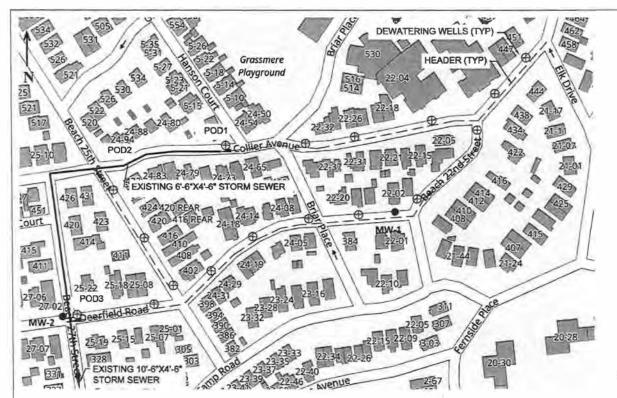
Vake as m necessary ist the resi on each co	for eaults from py of the	copies of this table as ach outfall. You can om 24 sampling dates this page.	Parameter name: Tetrachloroethylene	Parameter name: 3	Parameter name:				
Page	1	Of 1	CAS Number: 127-18-4	CAS Number:	CAS Number.	CAS Number.	CAS Number:	CAS Number:	CAS Number:
		Flow rate	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Date	9	Units:	Units: ug/L	Units:	Units:	Units:	Units:	Units:	Units:
5/3/201	16	MW-2	4.7						
	-								
							~		
	_								
	-								
	_							ie dans	
								·	
									-
	-								
	-								
	_								

Discharge Monitoring Report (DMR) Signature Authorization Form

Facility Name Construction of Storm Sewers, Sanitary Sew and Water Mains in New Haven Avenue, etc	Pers Date
Name of person described in paragraph (1), (2) or (3): Jean M. Jean-Louis	Title: Assistant Commissioner
Signature of person described in paragraph (1) (2), or (3):	Date: 03/27/17

Permittee Name_New York City Department of Design and Construction SPDES NO._

THE PERMITTEE MUST NOTIFY THE DEPARTMENT OF ANY CHANGE IN THIS INFORMATION DURING THE LIFE OF THE PERMIT


Name and/or Title of person responsible for signing and submitting DMR's:	Phone:					
Donna J. Cettina, Sr Project Manager	(347) 619-5866					
Mailing Name: CAC Industries Inc.						
Mailing Address: 54-08 Vernon Blvd	City: Long Island City	State: NY	Zip Code: 11101			
Name and/or Title of person responsible for signing and submitting DMR's:	Phone:					
	()					
Mailing Name:						
Mailing Address:	City:	State:	Zip Code:			
Name and/or Title of person responsible for signing and submitting DMR's:	Phone:					
	()					
Mailing Name:						
Mailing Address:	City:	State:	Zip Code:			
Name and/or Title of person responsible for signing and submitting DMR's:	Phone:					
	()					
Mailing Name:						

Mailing	Address:
---------	----------

City: State:

Zip Code:

Return To: SPDES Compliance Information Section Bureau of Water Compliance Programs New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-3506

PROJECT SUMMARY

Project Name & No.	Construction of Storm Sewers, Sanitary Sewers and Water Mains in New Haven Avenne, etc. , Qneens, New York 11691 (NYCDDC Project ID: SEQ200524)
Scope of Work	Dewatering will be conducted on Deerfield Rd, etc. in Rockaway, Queens where a temporary dewatering and remediation system will be connected at three locations to existing 6'-6"X4'-6" and 10'-6"X4'-6" storm sewers on Collier Avenue and Beach 27 th Street during construction of water main, storm and sanitary sewers
Pump Capacity	560 gpm working at 320 gpm
Number of Pumps at -	Maximum 7 pumps @ 320 gpm and 1 backup
Estimated Daily Pumphge	3.22 MGD (2240 gpm = 5.00 cfs) at three points of discharge (POD) each. Only one POD will be active at a time
Duration of pumping	2 years
Flow Meter	MW500 Manufactured by McCrometer
Pre-treatment Equipment	One 24000-gallon Settling Tank
Discharge Pipe Location	Header pipes will convey groundwater from individual wells to the settling tank. The discharge from the tank will enter the existing storm sewers by way of a temporary connection. The dewatering pumps, header pipe and settling tank will be relocated with project progress.

CALCULATIONS FOR POD1 & POD2		
MAXIMUM FLOW RATE INSIDE THE EXISTING_6-6"X4"		
Siope:	S =	0.0013
Area of Sewer in ft2: A = #HW	A =	22.96
Hydrautic Radius in feet = Area of pipe/Perimeter	Hr =	1.33
Manning's coefficient n (NYCDEP approved value is 0.013)	n =	0.013
Flow Velocity in fl/sec: V = {(1.486)*(Hr) ^{27*} (S) ^{1/2} }/n	V =	4.98
Flow Volume in cfs: Q = A*V	Q in cis =	114.43
Flow Volume in gpm: Q in efs*448.8	Q in gpm =	61,358
Flow Ratio in percentage: pump capacity/sewer capacity	Flow Ratio =	4.4%
CALCULATIONS FOR POD3		
MAXIMUM FLOW RATE INSIDE THE EXISTING_10'-6"X4	-6"_STORM SE	
Slope	S =	0.0013
Area of Sewer in ft2: A = THW	A =	37.09
Hydraulic Radius in feet = Area of pipe/Perimeter	Hr =	1.58
Manning's coefficient n (NYCDEP approved value is 0,013)	n =	0.013
Flow Velocity in ft/sec: V = {(1.486)*(Hr) ^{2%} (S) ^{1/2} }/n	V =	5.58
Flow Volume in cfs: Q = A*V	Q _{ki cfa} ≖	206,97
Flow Volume in gpm: Q in cfs*448.8	Q in gpm =	92,888
Flow Ratio in percentage: pump capacity/sewer capacity	Flow Ratio =	Z.4%
FLOW RATE IN TEMPORARY 12" DISCHARGE PIPE		
Slope	S =	0.10
Area of pipe in ft ² : A = 3.1416°r ²	A =	0.79
Hydraulic Radius in feet = Area of pipe/Perimeter = r/2	Hr =	0.25
Manning's coefficient n (NYCDEP approved value is 0.013)	n =	0.013
Flow Velocity in ft/sec: V = {(1.486)*(Hr) ²⁵ *(S) ^{1/2} }/n	V =	14.34
How Volume in cfs; Q = A*V	Q in cfs =	11.26
Flow Volume in gpm: Q in cfs*448.8	Q ter gpm=	5,054
Flow Ratio in percentage: pump capacity/sewer capacity	Flow Ratio =	44.3%

<u>Notes</u>

Flow from individual wells will be discharged to a settling tank before conveyance to the point of discharge

DEWATERING PLAN FOR NEW HAVEN AVENUE, ETC. PROJECT, QUEENS December 7, 2016

C.A.C. Industries, Inc. 54-08 Vernon Blvd Long Island City, NY 11101

This plan is prepared based on the information provided by others and reasonable engineering assumptions. The recommendations expressed in this plan are not an opinion concerning the compliance of any past or present owner or operator of the site with any federal, state or local law or regulation. No warranty or guarantee, whether express or implied, is made with respect to the data reported or conclusions expressed in this plan. The project construction manager and thereabouts the project owner hereby agree to indemnify and to save harmless Applemon Corporation and us professionals from and against any and all claims, suits, actions, proceedings, and losses that may arise after the date of this agreement from the construction, maintenance, operation, or use of any equipment (direct or indirect) for the purpose of dewatering at this location. In addition it is noted that Applemon is held harmless due to any harmful side effects of lowering the water table such as but not limited to impact of drawdown on the perimeter of the site, salt water intrusion, movement of contaminated groundwater, backflow due to surcharge of ouldt sewer and effect on any wetlands. Monitoring procedures for securing adjacent structures against any impacts during dewatering such as settlement and formation of cracks should be adopted.

Fuad F. Adib, P.E. PE License No. 078921 Applemon Corporation 151 S. Mountain Road New City, NY 10956 Tel. (845) 634-0858

December 7, 2016

Mr. Stephen Watts Deputy Regional Permit Administrator New York State Department of Environmental Conservation 47-40 21st Street, 2nd Floor Long Island City, New York, 11101

Re: Groundwater pH Measurement Construction of Storm Sewers, Sanitary Sewers and Water Mains in New Haven Avenue, etc. Queens, New York 11691 NYCDDC Project ID: SEQ200524

Dear Mr. Watts:

pH of groundwater was measured at the above location on May 3, 2016 according to the followings:

pH of groundwater at the time of sampling was 7.8 and 7.2 for MW-1 and MW-2, respectively.

Please do not hesitate to contact me if you have any questions.

Sincerely,

Firad FAdil

Fuad F. Adib, Ph.D., P.E. Project Engineer

Technical Report

prepared for:

Applemon Corporation 151 S. Mountain Road

> New City NY, 10956 Attention: Fuad Adib

Report Date: 05/11/2016 Client Project ID: New Haven Ave Queens York Project (SDG) No.: 16E0100

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005

New York Cert, No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-0166

Page 1 of 14

Report Date: 05/11/2016 Client Project ID: New Haven Ave Queens York Project (SDG) No.: 16E0100

Applemon Corporation 151 S. Mountain Road New City NY, 10956 Attention: Fuad Adib

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 04, 2016 and listed below. The project was identified as your project: New Haven Ave Queens.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample 1D	Matrix	Date Collected	Date Received
16E0100-01	MW-I	Water	05/03/2016	05/04/2016
16E0100-02	MW-2	Water	05/03/2016	05/04/2016

General Notes for York Project (SDG) No.: 16E0100

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Date: 05/11/2016

YORK

Benjamin Gulizia Laboratory Director

Client Sample 1D: MW-1			York Sample ID:	16E0100-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
16E0100	New Haven Ave Queens	Water	May 3, 2016 5:00 pm	05/04/2016

	rganics, 601/602/MTBE List ed by Method: EPA 5030B				Log-in	Notes:	č.	Sam	ple Notes	<u>1:</u>		
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
1-55-6	1,1,1-Trichloroethane	ND		ug/L	1,2	5.0	1	EPA 624 Certifications	CTDON NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 13:53	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:		05/06/2016 08:42	05/06/2016 13:53	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 13:53 P,PADEP	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	1.2	5.0	L	EPA 624 Certifications		05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 13:53	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.6	5.0	1	EPA 624 Certifications:		05/06/2016 08:42	05/06/2016 13:53	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:		05/06/2016 08:42	05/(16/201613:53	SS
07-06-2	1,2-Dichloroethane	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 13:53 P.PADEP	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	1.5	5.0	1	EPA 624 Certifications:	CTDOH.NE	05/06/2016 08:42	05/06/2016 13:53 P.PADEP	SS
41-73-1	1,3-Dichlorobenzene	ND		ug/L	1.1	5.0	1	EPA 624 Certifications:		05/06/2016 08:42	05/06/2016 13:53	SS
06-46-7	1,4-Dichlorobenzene	ND	\mathbb{I}_{N}	ug/L	1.2	5.0	1	EPA 624 Certifications:		05/06/2016 08:42	05/06/2016 13:53	SS
10-75-8	2-Chloroethylvinyl ether	ND	VOA-R EAC	ug/L	2.1	20	1	EPA 624 Certifications:	NELAC-NY	05/06/2016 08:42	05/06/2016 13:53	SS
1-43-2	Benzene	ND		ug/L	1.3	5.0	1	EPA 624 Certifications:	CTDOH,NEI	05/06/201608:42	05/06/201613:53	SS
5-27-4	Bromodichloromethane	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:		05/06/2016 08:42 AC-NY10854,NJDE	05/06/2016 13:53	SS
5-25-2	Bromoform	ND		ug/L	1.3	5.0	1	EPA 624 Certifications:		05/06/2016 08:42 AC-NY10854,NJDE	05/06/2016 13:53	SS
4-83-9	Bromomethane	ND		ug/L	4.2	5.0	ji.	EPA 624		05/06/2016 08:42	05/06/2016 13:53	SS
6-23-5	Carbon tetrachloride	ND		ug/L	1.4	5.0		EPA 624		05/06/2016 08:42 AC-NY10854,NJDE	05/06/2016 13:53	SS
08-90-7	Chlorobenzene	ND		ug/L	1.2	5.0	ā	EPA 624		05/06/2016 08:42 AC-NY 10854,NJDEI	05/06/2016 13:53	SS
5-00-3	Chloroethane	ND		ug/1.	1.3	5.0	1	EPA 624		05/06/2016 08:42 AC-NY10854,NJDE	05/06/2016 13:53	SS
7-66-3	Chloroform	ND		ug/L	1.1	5.0	1	EPA 624		05/06/2016 08:42	05/06/2016 13:53	SS
1-87-3	Chloromethane	ND		ug/L	0.96	5.0	1	EPA 624		05/06/2016 08:42	05/06/2016 13:53	SS
56-59-2	cis-1,2-Dichloroetbylene	29	,	ng/L	0.89	5.0	I	EPA 624		05/06/2016 08:42 AC-NY 10854,NJDEF	05/06/2016 13:53	SS

120 RESEARCH DRIVE

(203) 325-1371

FAX (203) 357-0166

Statistics.

Chent Bampie ID, MIW-J	Client	Sample	ID:	MW-1
------------------------	--------	--------	-----	------

÷

16E0100	New Haven Ave Queens	Water	May 3, 2016 5:00 pm	05/04/2016
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received

Volatile Organics, 601/602/MTBE List Sample Prepared by Method: EPA 5030B				Log-in Notes:					Sample Notes:			
Sample Prepare		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
10061-01 - 5	cis-1,3-Dichloropropylene	ND		ug/L	1.2	5.0	1	EPA 624		05/06/2016 08:42	05/06/2016 13:53	SS
								Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
24-48-1	Dibromochloromethane	ND		ug/L	1.1	5.0	1	EPA 624 Certifications:	CTDOH,NI	05/06/2016 08:42 ELAC-NY 10854,NJDI	05/06/2016 13:53 EP,PADEP	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	3.3	5.0	1	EPA 624 Certifications:	NELAC-N	05/06/2016 08:42 10854.NJDEP	05/06/2016 13:53	SS
00-41-4	Ethyl Benzene	1.4	1	ug/L	1.2	5.0	1	EPA 624 Certifications:	CTDOH,NI	05/06/2016 08:42 ELAC-NY10854,NJDI	05/06/2016 13:53 EP,PADEP	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	1.5	Ţ	ug/L	0.53	5.0	1	EPA 624 Certifications:	CTDOH,NI	05/06/2016 08:42 ELAC-NY10854,NJDE	05/06/2016 13:53 EP.PADEP	SS
/5-09-2	Methylene chloride	ND		ug/L	2.1	10	1	EPA 624 Certifications:	CTDOH,NI	05/06/2016 08:42 ELAC-NY 10854,NJDE	05/06/2016 13:53 EP,PADEP	SS
95-47-6	o-Xylene	ND		ug/L	1.1	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 ELAC-NY10854,NJDE	05/06/2016 13:53 EP	SS
79601-23-1	p- & m- Xylenes	ND		ug/L	2.3	10	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42	05/06/2016 13:53 EP	SS
27-18-4	Tetrachloroethylene	ND		ug/L	3.3	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42	05/06/2016 13:53	SS
08-88-3	Toluene	1.3	I	ug/L	0.81	50	ï	EPA 624 Certifications		05/06/2016 08:42 LAC-NY 10854,NJDE	05/06/2016 13:53	SS
56-60-5	trans-1,2-Dichloroethylene	ND		ug/L	3.5	5.0	Ĩ	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42	05/06/2016 13:53	SS
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	1.3	5.0	1	EPA 624 Certifications:	CTDOH.NE	05/06/2016 08:42	05/06/2016 13:53	SS
9+01-6	Trichloroethylene	33		ug/L	1.2	5.0	1	EPA 624 Certifications:		05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 13:53	SS
5-69-4	Trichlorofluoromethane	ND		ug/L	1.4	5.0	ĩ	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY 10854,NJDE	05/06/201613:53 EP,PADEP	SS
5-01-4	Vinyl Chloride	ND		ug/L	1.3	5.0	I.	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 13:53	SS
330-20 - 7	Xylenes, Total	ND		ug/L	3.4	15	1	EPA 624 Certifications:		05/06/2016 08:42	05/06/2016 13:53	SS
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
7060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			65-135							
037-26-5	Surrogate: Toluene-d8	98.0 %			86-118							
50-00-4	-											
50-00-4	Surrogate: p-Bromofluorohenzene	101 %			81-114							

Metals, Priority Pollutant in Wasteynter Sample Prepared by Method: EPA 200.7						<u>Log-in</u>	Notes		<u>Samp</u>	le Note	<u>s:</u>		
CAS	No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference N	ſethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-36-0	Antimony		ND		mg/L	0.003	0.006	1	EPA 200 7 Certifications:	CTDOH,NE	05/05/2016 10:19 ELAC-NY 10854,NJDI	05/05/2016 18:47 EP,PADEP	κv

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

FAX (203) 357-01.66

York Sample 1D;

16E0100-01

Page 4 of 14

Client Sample ID:	MW-1
-------------------	------

16E0100	New Haven Ave Queens	Water	May 3, 2016 5:00 pm	05/04/2016
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received

	<u>fetals, Priority Pollutant in Wastewater</u> ample Prepared by Method; EPA 200.7			Log-in Notes:					Sample Notes:				
CAS N		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic		0.007		mg/L	0.003	0.004	13	EPA 200.7 Certifications:	CTDOH,N	05/05/2016 10:19 ELAC-NY 10854,NJDE	05/05/2016 18:47 EP,PADEP	ΚV
7440-41-7	Beryllium		ND		mg/L	0,001	0 001	1	EPA 200.7 Certifications	CTDOH,NI	05/05/2016 10:19 ELAC-NY10854,NJDE	05/05/2016 18:47 EP,PADEP	KV
7440-43-9	Cadmium		ND		mg/L	0.003	0.003	1	EPA 200 7 Certifications	CTDOH,NI	05/05/2016 10:19 ELAC-NY 10854,NJDE	05/05/2016 18:47 EP,PADEP	KV
7440-47-3	Chromium		0.015		mg/L	0.001	0.006	1	EPA 200.7 Certifications	CTDOH,NI	05/05/2016 10:19 ELAC-NY 10854,NJDE	05/05/2016 18:47 P,PADEP	KV
7440-50-8	Copper		0,006		mg/L	0.001	0.003)	EPA 200.7 Certifications:	CTDOH,NI	05/05/2016 10:19 ELAC-NY 10854,NJDE	05/05/2016 18:47 P,PADEP	KV
7439-92-1	Lead		ND		mg/L	0.001	0.003	1	EPA 200.7 Certifications:	CTDOH.NI	05/05/2016 10:19 ELAC-NY10854,NJDE	05/05/2016 18:47 P,PADEP	κv
7440-02-0	Nickel		0.008		mg/L	0,001	0,006	1	EPA 200.7 Certifications:	CTDOH,NI	05/05/2016 10:19 ELAC-NY10854,NJDE	05/05/2016 18:47 P,PADEP	KV
782-49-2	Selenium		ND		mg/L	0.004	0 011	1	EPA 200 7 Certifications:	CTDOH,NE	05/05/2016 10:19 ELAC-NY 10854,NJDE	05/05/2016 18:47 P,PADEP	ΚV
7440-22-4	Silver		ND		mg/L	0.001	0.006	1	EPA 200.7 Certifications:	CTDOH,NI	05/05/2016 10:19 ELAC-NY10854,NJDE	05/05/2016 18:47 P,PADEP	KV
7440-28-0	Thallium		ND .		ıng/L	0,002	0,006	1	EPA 200,7 Certifications:	CTDOH,NE	05/05/2016 10:19 ELAC-NY 10854,NJDE	05/05/2016 18:47 P.PADEP	кv
7440-66-6	Zinc		0.021		mg/L	0.003	0,011	1	EPA 200 7 Certifications:	CTDOH,NE	05/05/2016 10:19 LAC-NY10854,NJDE	05/05/2016 18:47 P,PADEP	KV

Mercury by EPA 2	245.1				Log-in	Notes:		Sample Note	25:		
Sample Prepared by Metho	d: EPA 245,1 Mercury										
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported Io LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analys
1439-97-6 Mercury		ND		mg/L	0.0000950	0 0000200	1	EPA 245.1 Centifications: CTDOH,N	05/04/2016 21:30 ELAC-NY 10854,NJDE	05/04/2016 21:30 P.PADEP	AA
Total Settleable So Sample Prepared by Method					Log-in	Notes:		Sample Note	<u>:s:</u>		
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Total Set	tleable Solids	ND		mL/L	0.100	0 100	1	SM 2540F Certifications: NELAC-N	05/04/2016 23:56 Y 10854, NJDEP, PADEP	05/05/2016 01:03	AA
lotal Suspended S	<u>olids (EPA)</u>				Log-in	Notes:		Sample Note	s:		
Sample Prepared by Method	I: % Solids Prep										
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
* Total S	uspended Solids	3.40		mg/L	2 00	2.00	ï	EPA 160.2 Certifications:	05/05/2016 16:20	05/06/2016 00:52	AA

York Sample ID:

16E0100-01

\$2. (A

Sample Information

				- P	e morn							
Client Sample II	<u>D:</u> MW-1									York Sample	<u>e ID:</u> 16	E0100-0
York Project (SD	OG) No.	Clien	t Project II	0			M	latrix	Colle	ction Date/Time	Date	Receiv
16E010	0	New Hav	en Ave Qu	ieens			N	/ater	May 3	, 2016 5:00 pm	(05/04/20
Nitrate + Nitrite Sample Prepared by Me					<u>Log-ir</u>	Notes:		Sam	ple Note	<u>'81</u>		
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
Nitra	ate + Nitrite Calculated Analyte	5.20		mg/L	0 0210	0 1 0 0	1	Nitrite Nitrate C Certifications:	acl	05/04/2016 18:20	05/04/2016 18:20	AD
Nitrate + Nitrite					Log-in	Notes:		Sam	pie Note	s:		
Sample Prepared by Me	thod: EPA 300	Result	Flag	Units	LOD/MDL	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analy
	ate as N	5.20	riag	mg/L	0 0120	0.0500	1	EPA 300,0 Certifications:		05/04/2016 18:20 Y 10854.CTDOH,NJDE	05/04/2016 18:20	AD
4797-65-0 Nitrit	e as N	ND		mg/L	0.00900	0.0500	1	EPA 300 0 Certifications:		05/04/2016 18:20 Y 10854, CTDOH,NJDE	05/04/2016 18:20	AD
Dil & Grease	thod: Analysis Preparation				Log-in	Notes:		Sam	ple Note	<u>s:</u>		
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analy
ILGREASE Oil &	Grease	ND		mg/L	0.541	0 541	1	EPA 1664A Certifications:	NELAC-N	05/09/2016 16:16 (10854.CTDOH,NJDE	05/10/2016 00:47 P,PADEP	AA
		معانين متفحاد تباد		Sample	Inform	ation						
Client Sample ID	<u>):</u> MW-2									York Sample	<u>ID:</u> 16]	E0100-
York Project (SDC	<u>G) No.</u>	<u>Client</u> New Have	Project II					atrix ater		tion Date/Time		<u>Receiv</u> 5/04/20

	rganics, 601/602/MTBE List				Log-in Notes:			Sau	nple Notes:		
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time e Method Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	1,2	5.0	1	EPA 624 Certifications:	05/06/2016 08:42 CTDOH,NELAC-NY10854,NJI	05/06/2016 14:19 DEP,PADEP	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:	05/06/201608:42 CTDOH,NELAC-NY 10854,NJE	05/06/2016 14:19 DEP,PADEP	SS
9-00-5	1,1,2-Trichloroethane	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:	05/06/2016 08:42 CTDOH NELAC-NY 10854, NJD	05/06/2016 14:19 DEP.PADEP	SS
5-34-3	l,1-Dichloroethane	ND		ug/L	1.2	5.0	1	EPA 624 Centifications:	05/06/2016 08:42 CTDOH,NELAC-NY10854,NJD	05/06/2016 14:19 DEP,PADEP	SS
5-35-4	1,1-Dichloroethylene	ND		ug/L	1.6	5.0	1	EPA 624 Certifications:	05/06/201608:42 CTDOH,NELAC-NY 10854,NJD	05/06/2016 14:19 DEP,PADEP	SS
5-50-1	1,2-Dichlorobenzene	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:	05/06/2016 08:42 CTDOH,NELAC-NY10854,NJD	05/06/2016 14:19 EP,PADEP	SS
120	RESEARCH DRIVE	STRATFOR	RD, CT 066	615			(203) 325-	1371	FAX (203) 35	7-0166 Page 6	of 14

Client	Sample	ID:	MW-2

14.0

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
16E0100	New Haven Ave Queens	Water	May 3, 2016 5:00 pm	05/04/2016

	Organics, 601/602/MTBE List				Logen	Notes		3811	ple Note:	<u>s:</u>		
Sample Prepar	ed by Method: EPA 5030B Parameter	Result	Flag	Units	Reported to	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
107-06-2	1,2-Dichloroethane	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 EP,PADEP	SS
8-87-5	1,2-Dichloropropane	ND		ug/L	1.5	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 EP,PADEP	SS
41-73-1	1,3-Dichlorobenzene	ND		ug/L	1.1	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P,PADEP	SS
06-46-7	1,4-Dichlorobenzene	ND		ug/L	1.2	5.0	ä	EPA 624 Certifications:	CTDOH,NE	05/06/2016 (18:42 LAC-NY10854,NJDE	05/06/2016 14:19 P,PADEP	SS
10-75-8	2-Chloroethylvinyl ether	ND	VOA-R EAC	ug/L	2.1	20	1	EPA 624 Certifications:	NELAC-NY	05/06/2016 08:42	05/06/2016 14:19	SS
1-43-2	Benzene	ND		ug/L	1.3	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY 10854,NJDE	05/06/2016 14:19 P,PADEP	SS
5-27-4	Bromodichloromethane	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 ()8:42 LAC-NY10854,NJDE	05/06/2016 14:19 P,PADEP	SS
5-25-2	Bromoform	ND		ug/L	1.3	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P,PADEP	SS
1-83-9	Bromomethane	ND		ug/L	4.2	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P.PADEP	SS
-23-5	Carbon tetrachloride	ND		ug/L	1.4	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P,PADEP	SS
08-90-7	Chlorobenzene	ND		ug/L	1.2	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P,PADEP	SS
-00-3	Chloroethane	ND		ug/L	1.3	5.0	1	EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P.PADEP	SS
-66-3	Chloroform	ND		ug/L	1.1	5.0	1	EPA 624 Certifications	CTDOH,NE	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P,PADEP	SS
-87-3	Chloromethane	ND		ug/L	0.96	5.0	1	EPA 624 Certifications:	CTDOH,NEI	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P,PADEP	SS
i6-59 -2	cis-1,2-Dichloroethylene	ND		ug/L	0.89	5.0	1	EPA 624 Certifications:	CTDOH,NEI	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P	SS
061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	1.2	5.0		EPA 624 Certifications	C T DOH,NEI	05/06/2016 08:42 LAC-NY10854,NJDE	05/06/2016 14:19 P,PADEP	SS
4-48-1	Dibromochloromethane	ND		ug/L	1.1	5.0		EPA 624 Certifications:	CTDOH,NE	05/06/2016 08:42 LAC-NY 10854,NJDE	05/06/2016 14:19 P,PADEP	SS
-71-8	Dichlorodifluoromethane	ND		ug/L	3.3	5.0		EPA 624 Certifications:	NELAC-NY	05/06/2016 08:42 10854.NJDEP	05/06/2016 14:19	SS
0-41-4	Ethy! Benzene	ND		ug/L	1.2	5.0		EPA 624 Certifications:	CTDOH,NEI	05/06/2016 08:42 .AC-NY 10854,NJDEI	05/06/2016 14:19 P,PADEP	SS
34-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.53	5.0		EPA 624 Certifications:	CTDOH.NEI	05/06/2016 08:42 AC-NY 10854,NJDEI	05/06/2016 14:19 P.PADEP	SS
-09-2	Methylene chloride	ND		ug/L	2.1	10		EPA 624 Certifications:	CTDOH,NEL	05/06/2016 08:42 .AC-NY10854,NJDEF	05/06/2016 14:19 P,PADEP	SS
47-6	o-Xylene	ND		ug/L	1.1	5.0	1	EPA 624 Certifications:	CTDOHNE	05/06/2016 08:42 AC-NY10854,NJDEI	05/06/2016 14:19	SS

120 RESEARCH DRIVE

FAX (203) 357-0166

York Sample ID:

16E0100-02

Page 7 of 14

Sample Information

Client Sample 1D: MW-2				York Sample ID:	16E0100-02
York Project (SDG) No.	ě	Client Project ID	Matrix	Collection Date/Time	Date Received
16E0100		New Haven Ave Queens	Water	May 3, 2016 5:00 pm	05/04/2016

	rganics, 601/602/MTBE List				Log-in	Notes		<u>Sam</u>	ple Note	es:		
CAS No	ed by Method: EPA 5030B 0. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
179601-23-1	p- & m- Xylenes	ND		ug/L	2.3	10	1	EPA 624 Certifications;	CTDOH,N	05/06/2016 08:42 ELAC-NY 10854,NJD	05/06/2016 14:19 EP	SS
127-18-4	Tetrachloroethylene	4.7	J	ug/L	3.3	5.0	1	EPA 624 Certifications:	CTDOH,N	05/06/2016 08:42 ELAC-NY 10854,NJD	05/06/2016 14:19 EP,PADEP	SS
08-88-3	Toluene	ND		ug/L	0.81	5.0	1	EPA 624 Certifications:	CTDOH,NI	05/06/2016 08:42 ELAC-NY10854,NJD	05/06/2016 14:19 EP,PADEP	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	3.5	5.0	1	EPA 624 Certifications:	CTDOH,N	05/06/2016 08:42 ELAC-NY 10854,NJDI	05/06/2016 14:19 EP,PADEP	SS
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	1.3	5.0	1	EPA 624 Certifications:	CTDOH,NI	05/06/2016 08:42 ELAC-NY 10854,NJDI	05/06/2016 14:19 EP,PADEP	SS
79-01-6	Trichloroethylene	ND		ug/L	1.2	5.0	ĩ	EPA 624 Certifications	C'IDOH,NI	05/06/2016 08:42 ELAC-NY 10854,NJDI	05/06/2016 14:19 EP,PADEP	SS
/5-69-4	Trichlorofluoromethane	ND		ug/L	1.4	5.0	1	EPA 624 Certifications:	CTDOH,NI	05/06/2016 08:42 ELAC-NY 10854,NJDE	05/06/2016 14:19 EP,PADEP	SS
5-01-4	Vinyl Chloride	ND		ug/L	1.3	5.0	1	EPA 624 Certifications:	CTDOH,NI	05/06/2016 08:42 ELAC-NY 10854,NJDI	05/06/2016 14:19 EP.PADEP	SS
330-20-7	Xylenes, Total	ND		ug/L	3.4	15	•	EPA 624 Certifications:	C'IDOH,NI	05/06/2016 08:42 ELAC-NY 10854,NJDB	05/06/2016 14:19 EP	SS
	Surrogate Recoveries	Result		Acc	eptance Rang	ge						
7060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			65-135							
2037-26-5	Surrogate: Toluene-d8	97.1 %			86-118							
160-00-4	Surrogate: p-Bromofluorohenzene	104 %			81-114							

	Priority Pollutant in ared by Method: EPA 2007	Wastewater			Log-it	1 Notes:		Sam	ole Notes:			
CAS		ameter Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference		e/Time epared	Date/Time Analyzed	Analys
7440-36-0	Antimouy	ND		mg/L	0.003	0_006	1	EPA 200.7 Certifications:	05/05/20 CTDOH,NELAC-NY	016 10:19 10854, NJD	05/05/2016 18:53 EP,PADEP	KV
7440-38-2	Arsenic	ND		mg/L	0 003	0 004	1	EPA 200.7 Certifications:	05/05/20 CTDOH,NELAC-NY	016 10:19 10854, NJD	05/05/2016 18:53 EP,PADEP	кv
7440-41-7	Beryllium	ND		mg/L	0,001	0_001	1	EPA 200 7 Certifications:	05/05/20 CTDOH,NELAC-NY	016 10:19 10854 ,NJD	05/05/2016 18:53 EP,PADEP	KV
7440-43-9	Cadmium	ND		mg/L	0.003	0.003	1	EPA 200.7 Certifications:	05/05/20 CTDOH,NELAC-NY	016 10:19 10854,NJD	05/05/2016 18:53 EP,PADEP	ΚV
7440-47-3	Chromium	0.010		mg/L	0,001	0,006	i	EPA 200,7 Certifications:	05/05/20 CTDOH,NELAC-NY)]6]0:19 [0854,NJD]	05/05/2016 18:53 EP,PADEP	ΚV
7440-50-8	Copper	0.005		mg/L	0.001	0.003	1	EPA 200.7 Certifications:	05/05/20 CTDOH,NELAC-NY	016 10:19 10854, NJD I	05/05/2016 18:53 EP,PADEP	ΚV
7439-92-1	Lead	ND		mg/L	0.001	0 003	1	EPA 2007 Certifications:	05/05/20 CTDOH,NELAC-NY	016 10:19 0854,NJDI	05/05/2016 18:53 EP,PADEP	кV
7440-02 - 0	Nickel	0.018	1	mg/L	0 001	0.006	1	EPA 200 7 Certifications:	05/05/20 CTDOH,NELAC-NY 1	016 10:19 10854 ,NJD 1	05/05/2016 18:53 EP,PADEP	ΚV
120	RESEARCH DRIVE	STRATFORE	D, CT 0661	5		(2	203) 325-1	1371	FAX (203) 351	7-0166 Page 8 (of 14

Sample Information

Client Sa	ample ID: M	W-2	-		14.						York Sample	e ID: 10	SE0100-02
York Proj	ject (SDG) No.		Client	Project II	D			M	latrix	Colle	ction Date/Time	Dat	te Received
	16E0100		New Have	n Ave Qu	ieens	_		W	/ater	May 3	8, 2016 5:00 pm)	05/04/2016
370 E - 1	Priority Polluta red by Method: EPA 2	int in Wastewater				Log-in	Notes:		Sai	m <u>ple Note</u>	:5:		
CASN		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7782-49-2	Selenium		ND		mg/L	0.004	0.011	Ţ	EPA 200.7 Certifications:	CTDOH,N	05/05/2016 10:19 ELAC-NY10854,NJDI	05/05/2016 18:53 EP,PADEP	KV
7440-22-4	Silver		ND		mg/L	0.001	0.006	1	EPA 200 7 Certifications:	CTDOH,N	05/05/2016 10:19 ELAC-NY 10854,NJDI	05/05/2016 18:53 EP,PADEP	ΚV
7440-28-0	Thallium		0.012		mg/L	0.002	0 006	1	EPA 200.7 Certifications:	CTDOH,N	05/05/2016 10:19 ELAC-NY10854,NJDI	0\$/05/2016 18:53 EP,PADEP	KV
7440-66-6	Zinc		0.023		mg/L	0.003	0 011	1	EPA 200.7 Certifications:	C1DOH,N	05/05/2016 10:19 ELAC-NY10854,NJDE	05/05/2016 18:53 EP,PADEP	KV

Mercury	by EPA 24	5.1				Log-in	Notes:		San	ple Note	<u>s:</u>		
Sample Prepa	red by Method: E	EPA 245] Mercury											
CASN	ło.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/L	0.00009500	0.000200	. I	EPA 245.1		05/04/2016 21:30	05/04/2016 21:30	AA
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	EP,PADEP	

Total Settleable S	Solids (low-level)				Log-ir	Notes:		Sample Note	<u>es:</u>		
Sample Prepared by Meth	nod: Analysis Preparation										
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Total S	Settleable Solids	ND		mL/L	0.100	0 100	1	SM 2540F Certifications: NELAC-N	05/04/2016 23:56 Y10854.NJDEP,PADEI	05/05/2016 01:03 P	AA
Total Suspended	Solids (EPA)				Log-in	Notes:		Sample Note	251		
Sample Prepared by Meth	od: % Solids Prep										
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
* Total	Suspended Solids	32.4		mg/L	4.00	4.00	1	EPA 160.2 Certifications:	05/05/2016 16:20	05/06/2016 00:52	AA
Nitrate + Nitrite :	as Nitrogen				Log-in	Notes:		Sample Note	<u>:s:</u>		
Sample Prepared by Meth	od: Method Specific										
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Nitrate	+ Nitrite Calculated Analyte	ND		mg/L	0 0210	0 100	r	Nitrite Nitrate Cacl Certifications:	05/04/2016 18:38	05/04/2016 18:38	AD
Nitrate + Nitrite I Sample Prepared by Metho					<u>Log-in</u>	Notes:		Sample Note	<u>s:</u>		
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
4797-55-8 Nitrate	as N	ND		rng/L	0.0120	0.0500	1	EPA 300.0 Certifications: NELAC-NY	05/04/2016 18:38 Y 10854 <u>.</u> CTDOH,NJDE	05/04/2016 18:38 P,PADEP	AD
120 RESEAR	RCH DRIVE	STRATFOR	D, CT 066	515		(1	203) 325-1	1371	FAX (203) 357	-01.66 Page 9 d	of 14

Client Sample ID:	MW-2
-------------------	------

Client Sample ID:	MW-2									York Sample	<u>ID:</u> 10	5E0100-02
York Project (SDG) No	2	Client	Project II	2			M	latrix	Colle	ction Date/Time	Dat	c Received
16E0100		New Have	n Ave Qu	eens		_	N	Vater	May 3	3, 2016 5:00 pm		05/04/2016
Nitrate + Nitrite Nitr					Log-in	Notes:		San	iple Note	<u>:s:</u>		
Sample Prepared by Method: EF	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
14797-65-0 Nitrite as N		ND		mg/L	0.00900	0.0500	t	EPA 300 0 Certifications:	NELAC-N	05/04/2016 18:38 Y 10854,CTDOH,NJDE	05/04/2016 18:38 P,PADEP	AD
<u>Oil & Grease</u>					Log-it	Notes:		San	ple Note	<u>s:</u>		
Sample Prepared by Method: An	alysis Preparation					_						
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst

OILGREASE Oil & Grease ND mg/L 0,526 0.526 1 EPA 1664A 05/09/2016 16:16 05/10/2016 00:47 AA Certifications: NELAC-NY10854, CTDOH, NJDEP, PADEP

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
16E0100-01	MW-1	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
16E0100-02	MW-2	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Notes and Definitions

VOA-REAC2-chloroethylvinyl ether readily breaks down

under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

M-ACCB Analyte in CCB. Run is bracketed by acceptable CCBs.

J Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.

Analyte is not certified or the state of the samples origination does not offer certification for the Analyte	origination does not offer certification for the Analyte
---	--

- ND NOT DETECTED the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
- RL REPORTING LIMIT the minimum reportable value based upon the lowest point in the analyte calibration curve.
- LOQ LIMIT OF QUANTITATION the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
- LOD LIMIT OF DETECTION a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
- MDL METHOD DETECTION LIMIT a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
- Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
- NR Not reported
- RPD Relative Percent Difference
- Wet The data has been reported on an as-received (wet weight) basis
- Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

FAX [2	Denert		ature binds you to York's Std			DenetTer
YOUR Information Company: Applemon Address: Company Phose No. Contact Person: FVad Adr E-Mail Address: Print Clearly and Legibly. Samples will NOT be log clock will not begin until	E-Mail Address: All Information mi gged in and the tur	Company: Address: Phone No Attention: E-Mail Ad ust be complete. rn-around time	Adress: Volatiles Se 8260 full TICs 82 624 Site Spec. ST STARS list Nassan Co. BN BTEX Suffolk Co. Ac	70 or 625 8082PCB RCRA8 TI ARS list 8081Pest PP13 list TJ N Only 8151Herb TAL C sids Only CT RCP CT15 list N	Pe RUSH - Same Day RUSH - Next Day O. RUSH - Two Day RUSH - Two Day RUSH - Three Day RUSH - Four Day	Summary Report Summary W/ QA Summary CT RCP Package CTRCP DQA/DUE PI NY ASP A Package NY ASP B Package NJDEP Red. Deliv. <u>Electronic Data Defiverat</u> Simple Excel NYSDEC EQUIS EQUIS (std) EZ-EDD (EQUIS) NJDEP SRP HazSite F
Fruid F. A Samples Collected/Authoriz Fund Add Name (printe Sample Identification	ed By (Signature)	S - soil Other - specify(oil, em) WW - wastewater GW - groundwater DW - drinking water Air-A - ambient air Air-SV - soil vapor	TAGM list TCLP list CT CT RCP list 524.2 TC Arom. only 502.2 NJ Halog.only NJDEP list App.IX list SPIParTCIP 8021B list SPIParTCIP	AGM list Site Spec. NJDEP list AL PRCP list SPIPorTCLP Totel AL LL list TCLP Pest Dissolved AL JDEP list TCLP Herb SPIPorTCLP AL pp. LX Chlordane Infor Media AL CLP BNA 608 Pest LIST Below ML LP orTCLP 608 PCB H H	ir TO14A Par360Rate Heinotophs ir TO15 Par360Rate TOX ir STARS Par360Rate BTU/b.	GIS/KEY (std) Other York Regulatory Comp Excel Spreadsheet Compare to the following Regs. (r)
MW-1	513,12016	GW	NYSDEC	Parameters exc	ept pH	S3-40mL
Z	5:00 PM	¥		6		1-250 m 1-0.5 L 1-1L 2-1L
Page 14 of 14		Preservation Check those Applicable Special Instructions	4°C <u>Frozen</u> Zav Fua d Adi G Samples Relinquisher	Ac Ascorbic Acid Or 5/4/2016 (NO, ZH, SO, ZN2OH ther, S-4-[] amples Received By	τen on Date/Time