CJD Pathology and Diagnostic Markers

Pierluigi Gambetti, MD

National Prion Disease Pathology Surveillance Center

Human prion diseases: Classification

Form Phenotype

Sporadic CJD

Typical M/M (M/V) 1

Early V/V 1

Long M/M2

Kuru plaques M/V 2h

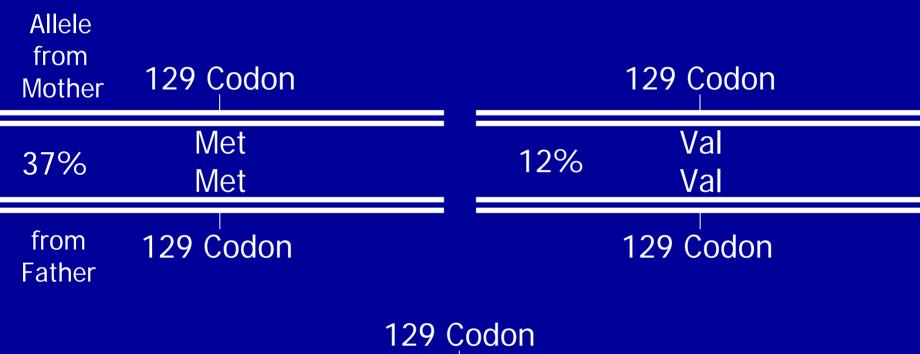
Ataxic V/V 2

KI

Inherited Creutzfeldt-Jakob disease (CJD)

Fatal Familial Insomnia (FFI)

Gerstmann-Sträussler-Scheinker (GSS)


Mixed or undefined

Acquired by infection Kuru

Iatrogenic CJD (iCJD)

Variant of CJD (vCJD)

Human Prion Protein Gene Codon 129 Polymorphism

Prevalence of the Met/Val Polymorphism at Codon 129 of the Prion Protein Gene in a Normal Caucasian Population

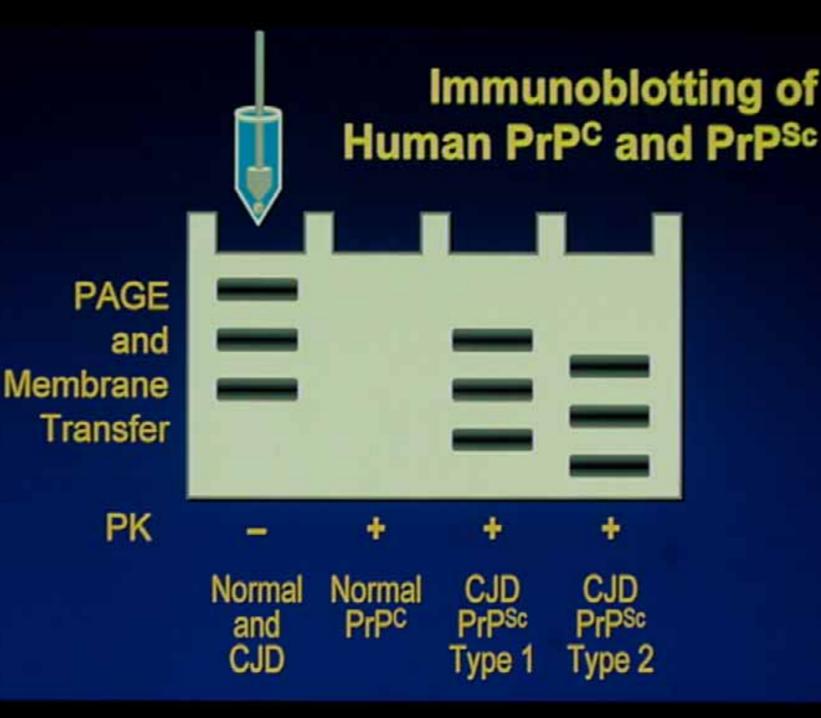
Met/Met

Met/Val

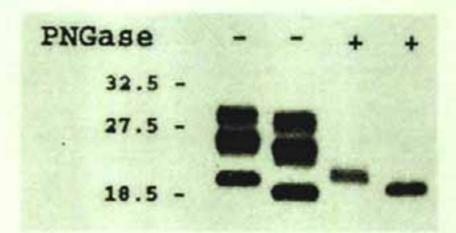
Val/Val

Met allele

Val allele


37%

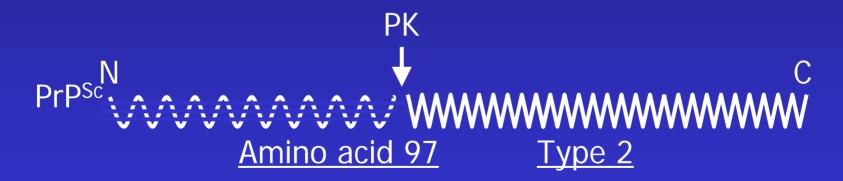
51%


12%

62%

38%

PrPSc Type 1 and 2 Size of PK-resistant fragment



Type 1 GQPHGGGWGOGGGTHSQWNKP...S

97
231
Type 2
SQWNKP...S

PrPSc Type How they are detected

The cleavage of the PrPSc by PK occurs at different sites because of the different conformation of the two PrPSc species

The Meaning of Generating PrP^{Sc} fragments of different sizes following digestion with proteases

The formation of PrPSc fragments of different sizes following treatment of PrPSc with a proteolytic enzyme indicates that the original PrPSc have different conformations and offer distinct cleavage sites to the proteolytic enzyme.

Subtypes of sCJD

Typical or myoclonic **Amyotrophic** Visual or Heidenhain **Thalamic** Ataxic or cerebellar **Corticostriatal Panencephalopathic Long Duration**

The six possible combinations of codon 129 alleles and PrPSc types correlated with disease phenotypes in patients with sporadic prion diseases

Codon 129	PrPSc Type
Met/Met	1
Met/Met	2
Met/Val	1
Met/Val	2
Val/Val	1
Val/Val	2

Classification of Sporadic Prion Diseases

Variant	Previous	Case	Onset (yrs)/	Distinctive Features
	Classificat.	(%)	Durat.(mo)	
			sCJD	
M/M 1 M/V 1	Myoclonic Heidenhain	71	63.2 / 3.9	Typical CJD clinically and pathologically. Typical EEG (83%). "Synaptic" pattern of immunostain
V/V 1	Unavailable	1	46.0 / 15.3	Early onset. No typical EEG. Cerebell spared. Weak "synaptic" immunostain
M/M 2 Cortical	Long duration	2	60.3 / 15.7	No typical EEG. Coarse spongiosis and immonostain. Cerebellum spared
M/V 2	Cerebellar or ataxic	8	60.3 / 17.0	Ataxia at onset. Rarely typical EEG. Kuru plaques. No cerebell. atrophy
V/V 2	Cerebellar or ataxic	16	60.3 / 6.6	As M/V 2 but no kuru plaques and cerebell. atrophy. Plaque-like present.
			sFI	
M/M 2	Sporadic fatal insomnia	2	60.3 / 14.0	Clinically and pathologically indistinguishable from FFI

Cases of sporadic CJD examined in the six molecular subtypes and sensitivity of 14-3-3 protein test

Sporadic CJD	14-3-3 Test Sensitivity	nPositive/ nTotal
PrP ^{Sc} type 1	96%	45/47
MM1	95%	40/42
MV1	100%	2/2
VV1	100%	3/3
PrP ^{Sc} type 2	80%	24/30
VV2	82%	14/17
MV2	80%	4/5
MM2 ^b	75%	6/8
Overall	90%	69/77

^aAccording to Parchi et al. (1999).

^bAll MM2 subjects belong to the MM2-cortical subtype (Parchi et al, 1999)

Human prion diseases: Classification

Form

Phenotype

Sporadic

CJD

Typical M/M (M/V) 1

Early V/V 1

Long M/M2

Kuru plaques M/V 2h

Ataxic V/V 2

FI

Inherited

Creutzfeldt-Jakob disease (CJD)

Fatal Familial Insomnia (FFI)

Gerstmann-Sträussler-Scheinker (GSS)

Mixed or undefined

Acquired by infection

Kuru

Iatrogenic CJD (iCJD)

Variant of CJD (vCJD)

Pathogenic mutations and polymorphisms of the human prion protein

Pathogenic Mutations and Phenotypes

Gerstmann-Sträussler-Scheinker Disease

F198S F200K* Fatal Familial Insomnia D202N Undetermined *Mutations with two or more known haplotypes Q160Stop R148H H187R M232T Insertion of 1. 2 P105L or 4,5-9 repeats* P105T Y145Stop T183A G131V Q212P P238S P102I ** A117V 0217R 51 D178N³ 253 β^1 NH+ V161V 1 repeat deletion P68P E196E **S230S** Q212Q R228R G124G H177H **Polymorphisms**

Variant Silent

Human prion diseases: Classification

Form Phenotype

Sporadic CJD

Typical M/M (M/V) 1

Early V/V 1

Long M/M2

Kuru plaques M/V 2h

Ataxic V/V 2

FI

Inherited Creutzfeldt-Jakob disease (CJD)

Fatal Familial Insomnia (FFI)

Gerstmann-Sträussler-Scheinker (GSS)

Mixed or undefined

Acquired by infection Kuru

Iatrogenic CJD (iCJD)

Variant of CJD (vCJD)

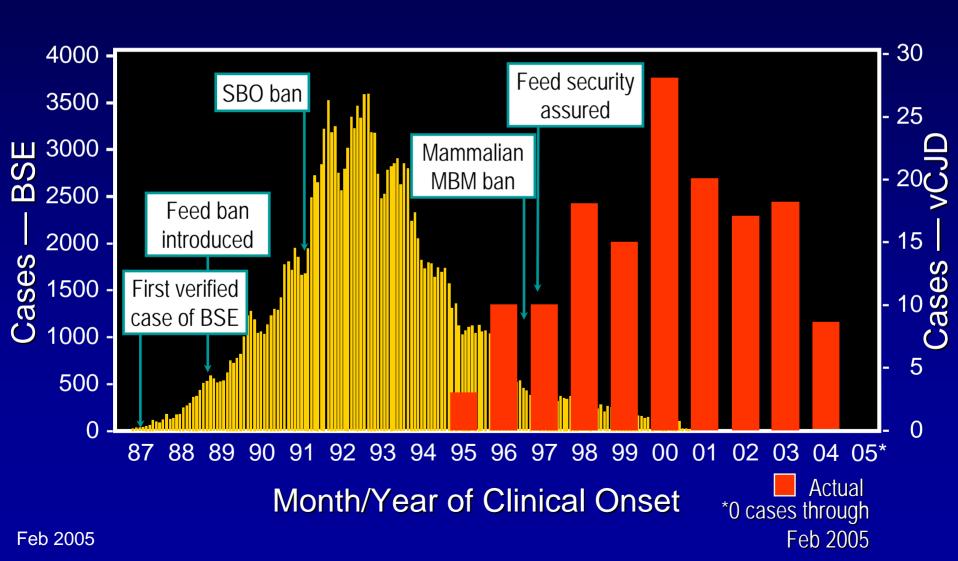
Others?

National Prion Surveillance Centers Why we need them

Animal to human transmission

BSE→vCJD 170[&] cases (UK154;FR9;IRL2;

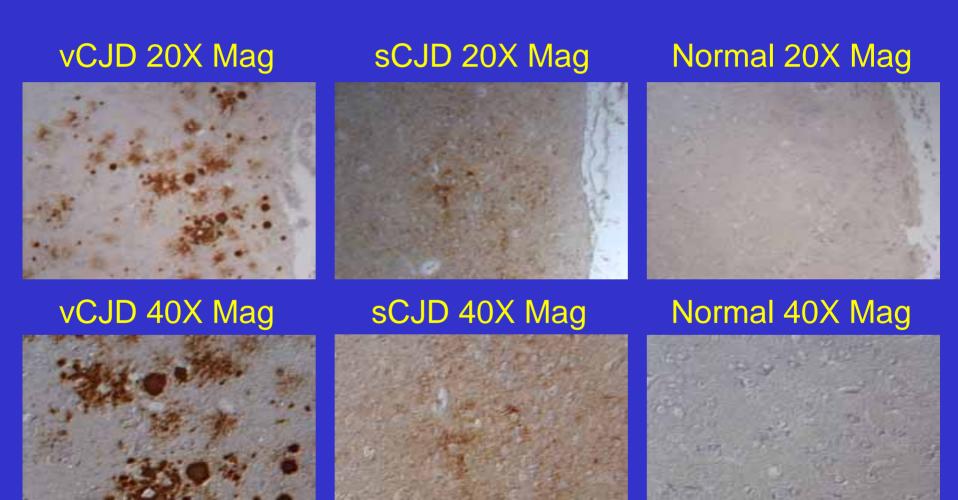
IT1;CA1*;US1*;JP1*;SA1)

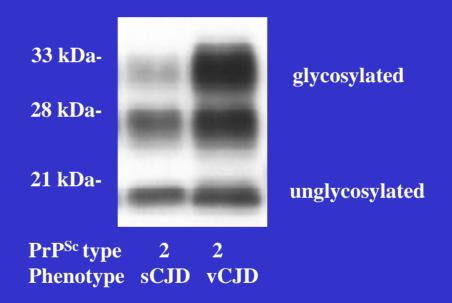

CWD→CJD? 26 cases of prion d. in hunters

Human to human transmission

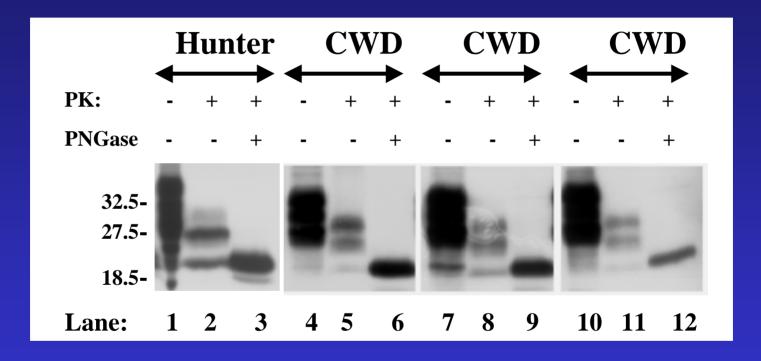
iCJD >300 cases worldwide

^{*} Probably acquired in UK &As of February 22, 2005


BSE and vCJD Epidemics Time Course

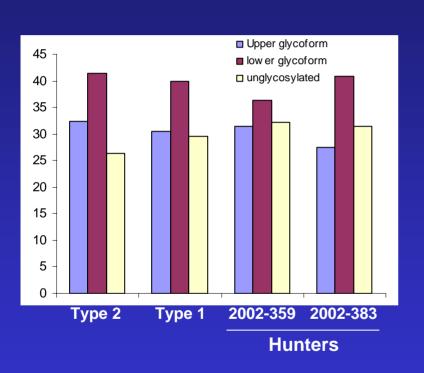

Variant Creutzfeldt-Jakob Disease Biopsy

PrP immunostaining in variant CJD, sporadic CJD and normal brain


Immunoblot of sporadic and variant Creutzfeldt-Jakob Disease Proteinase K-treated PrPSc

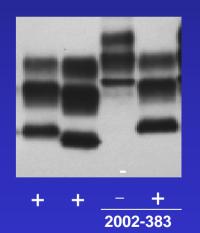
Immunohistochemical Staining of PrPSc in CWD Brain tissue

Comparison of PrPSc in brains of a hunter with CJD and elk with CWD

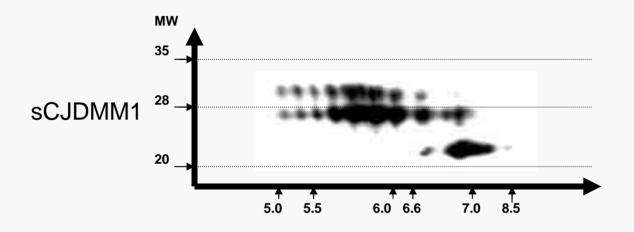


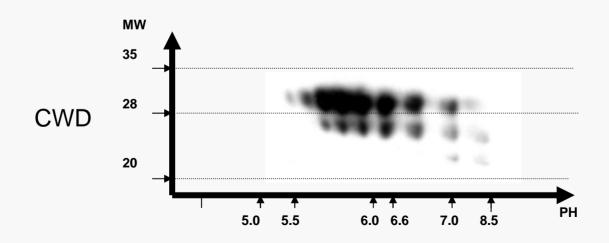
Species	# of Cases	PrPSc Type
Elk	9	1
Mule Deer	7	1

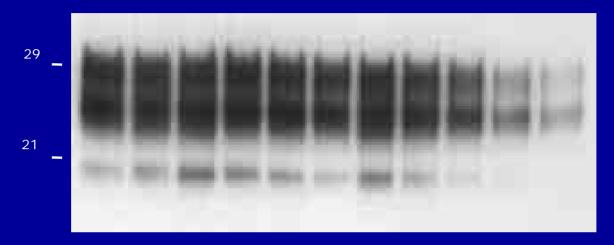
Summary of CJD Cases Investigated for a Possible Causal Association with CWD

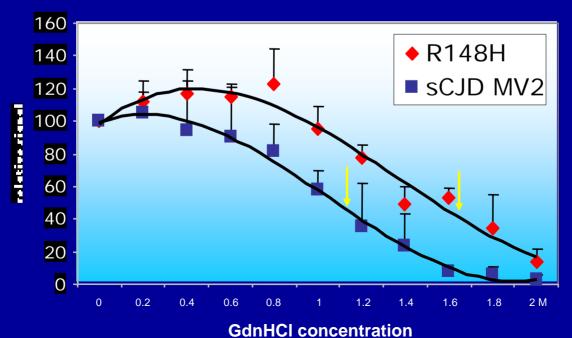

- Number of cases: 26
- Age range: 25-80 (average age: 54)
- •Final diagnosis:
 - sCJD: 22 cases
 - M/M 1: 9 cases
 - M/M 2: 1 case
 - M/V 1: 1 case
 - V/V 1: 2 cases
 - V/V 2: 5 cases
 - Unknown: 4 cases
 - fCJD: 1 case (E200K mutation)
 - GSS: 3 cases (all P102L mutation)

Ratios of the PrP^{Sc} glycoforms in sCJD and in two cases of CJD in hunters




	Di-	Mono	Unglycos
Type 2	32.31	41.37	26.32
Type 1	30.54	39.93	29.53
02-359	31.45	36.32	32.22
02-383	27.57	40.92	31.53


Two-Dimensional Immunoblots of PK-resistant PrPSc in Human sCJD MM1 and Elk CWD



Conformation stability assay

GdnHCl (M) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Conclusions

The threat to public health and the complexity of prion diseases made it necessary to establish Prion Surveillance Centers to:

- 1. Timely identify cases due to exogenous infection in order to limit spread
- 2. monitor all cases of prion disease to limit possible sources of infection
- 3. Collect and store tissues for research

National Prion Disease Pathology Surveillance Center

Supported by the Centers for Disease Control & Prevention (CDC) Sponsored by the American Association of Neuropathologists (AANP)

National Prion Disease Pathology Surveillance Center

- Dr. Pierluigi Gambetti Director
- Dr. Bernardino Ghetti Co-Director
- Dr. Shu G. Chen Prion Protein Analysis
- Dr. Wenquan Zou Prion Protein Analysis
- Dr. Linda Jeng Genetic Analysis
- Dr. Qingzhong Kong Genetic Analysis
- Dr. Mark Cohen Histopathology
- Dr. Clive Hamlin Biosafety & Quality Control
- Dr. Robert Petersen Consultant Genetics
- Dr. Man-Sun Sy Consultant Immunotesting
- Ms. Carrie Harris Center Manager

National Prion Disease Pathology Surveillance Center Cases Examined

Year	Referrals	Prion D.	Sporadic	Familial	latrogenic	vCJD
		<u>Total</u>				
1997	104	60	54	6	0	0
1998	94	51	44	6	1	0
1999	114	74	65	9	0	0
2000	169	111	97	12	2	0
2001	247	154	138	16	0	0
2002	265 ¹	151	127 ¹	22	1	12
2003	284 ³	191 ⁴	142	45	1	0
2004	351 ⁵	192 ⁶	138	19	0	0
Total	1628	984	805	135	5	1

¹ Includes 2 inconclusive

³ Includes 1 inconclusive

⁵ Includes 8 pending

² Acquired in United Kingdom

⁴ Includes 3 type unknown

⁶ Includes 6 type unknown, 26 type pending

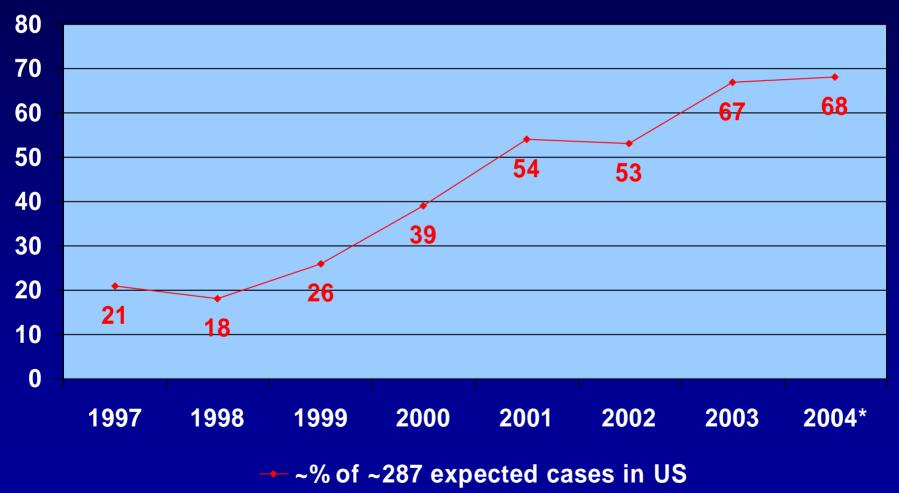
Jan 2005

National Prion Disease Pathology Surveillance Center CSF Examined

Year	Referrals	14-3-3 Positive	14-3-3 Negative
1997	13	5	8
1998	34	11	23
1999	74	27	47
2000	130	64	76
2001	202	95	107
2002	313	107	206
2003	292	81	77
2004	514	125	182
Total	1,572	515	726

Cases examined by the NPDPSC (n=561) classified according to Parchi et al 1999

		Distributi	on (%)
Phenotype	Variant	Center	Parchi
	M/M & M/V1 Classical	324 (58%)	71%
	V/V1 Early onset	24 (4%)	1%
Creutzfeldt- Jakob disease	M/M2 Coarse spongiosis, long duration, cortical pathol.	48 (9%)	2%
	M/V2 Ataxia, kuru plaques, long duration, subcort. pathol.	75 (13%)	17%
	V/V2 Ataxia, plaque- like, short duration, subcort. pathol.	83 (15%)	7%
Fatal Insomnia	M/M2 Similar to FFI	7 (1%)	2% Jan 200

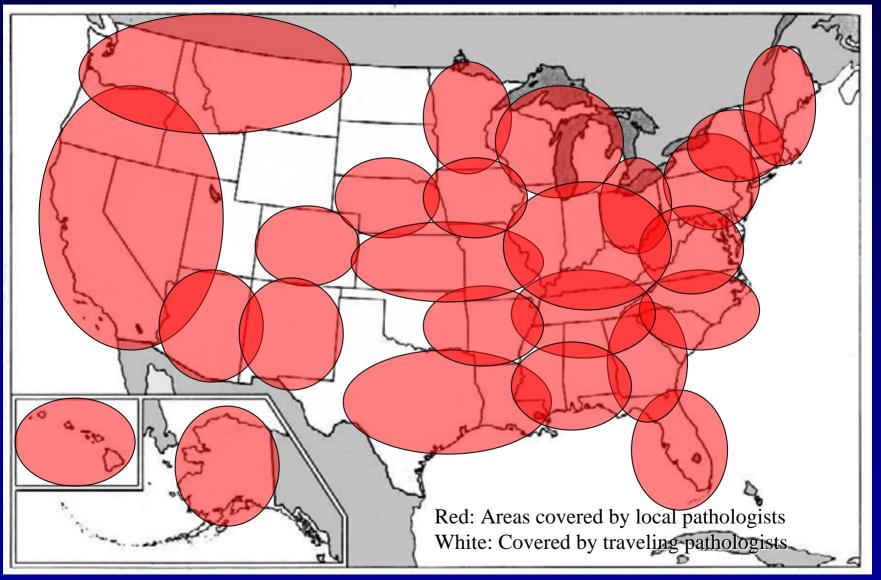

Mutations Identified 1997 – January 2005

Mutation	No	Mutation	No
E200K-129M/V	60	<u>G114V-129M</u>	1
D178N-129M/V	13	G94S-129V ³	1
Insert-129M/V	13	A118V ³	1
A117V-129V ¹	11	R148H-129M	1
P102L-129M/V	12	N171S-129V	1
V210I-129M ²	9	T188K-129V	1
F198S-129V ^{1,3}	6	Q217R-129M/V	1
T183A-129M/V	2	2Rep.Del-129M	1
H187R-129M/V	2	H208R – 129M	1

Contributed by: 1 B. Ghetti, 2 J. Mastrianni and 3 S. DeArmond

Note: New mutations are underlined.

National Prion Disease Pathology Surveillance Center Cases Examined as Percent of Cases Expected



Goals of Human Prion Surveillance

Overall goal is to timely detect all possible sources of prion infection by:

- 1. Monitoring the incidence of all prion diseases
- 2. Characterize and classify as accurately as possible all prion diseases to identify sporadic, familial, and transmitted cases
- 3. Deal with "atypical cases"
- 4. Update and develop techniques

National Autopsy Network of the Surveillance Center

We have established a network of institutions that perform reimbursed CJD autopsies on request. But we need the help of the State Health Departments to make the network more effective.

Cases/Million Received by the NPDPSC by State (2003-2004)

- •0.0 to 0.1 cases per million population: Idaho, Nevada, South Dakota, Vermont, West Virginia
- •0.2 to 0.3 cases per million population: Alabama, Illinois, Indiana, Louisiana, North Carolina, Utah
- •0.4 to 0.5 cases per million population: Arkansas, Georgia, Iowa, Kentucky, Mississippi, Rhode Island, South Carolina, Tennessee, Texas
- •0.6 to 0.7 cases per million population: Arizona, Connecticut, Delaware, Florida, Kansas, Maryland, Michigan, Minnesota, Nebraska, New Jersey, Oklahoma, Oregon, Pennsylvania
- •0.8 to 0.9 cases per million population: Alaska, <u>California</u>, <u>Colorado</u>, Hawaii, <u>Massachusetts</u>, <u>Missouri</u>, New Hampshire, <u>New York</u>, North <u>Dakota</u>, <u>Ohio</u>, <u>Virginia</u>, <u>Wisconsin</u>
- •1.0 or more cases per million population: Maine, Montana, New Mexico, Washington, Wyoming

 *States where CJD is reportable are printed in years.

*States where CJD is reportable are printed in yellow. States which have sent letters encouraging neurologists to report cases to the NPDPSC are <u>underlined</u>.

NPDPSC Cases/Million According to High and Low Referral States (2003-2004)

- 0.0 to 0.5 cases per million population: Total 20 States; 11 (55%) with CJD reportable; 3 (15%) with mailing
- 0.6 to 1.0 or more cases per million population: Total 30 States; 20 (67%) with CJD reportable; 10 (33%) with mailing

National Prion Disease Pathology Surveillance Center

Corrective Measures

- We need to increase reporting by raising the level of awareness especially of the Neurologists
- The Departments of Health of 44 States in collaboration with the NPDPSC have written (or agreed to write) to the Neurologists urging them to report all cases of suspected prion disease at the time of diagnosis so they can be followed and autopsied
- These initiatives may be more effective in the States where prion diseases are reportable
- We also need national clinical diagnostic criteria for probable and possible prion disease

Surveillance Center

I wish to thank...

<u>CDC</u> Drs. Lawrence Schoemberger and Ermias Belay

AANP Past-President Dr. Bernardino Ghetti

AAN Drs. Stanley Fahn, Raymond Roos,

Sami Harik, Richard Johnson

<u>NIH</u>

CJD Foundation Florence Kranitz, Mayra Lichter

CJD Insight

The Department of Health of many States, especially NYS, NYC and Ohio DOHs

And many, many other supporters